scholarly journals DNA Replication Stress Induced by Trifluridine Determines Tumor Cell Fate According to p53 Status

2020 ◽  
Vol 18 (9) ◽  
pp. 1354-1366 ◽  
Author(s):  
Yuki Kataoka ◽  
Makoto Iimori ◽  
Ryo Fujisawa ◽  
Tomomi Morikawa-Ichinose ◽  
Shinichiro Niimi ◽  
...  
2019 ◽  
Author(s):  
Yuki Kataoka ◽  
Makoto Iimori ◽  
Ryo Fujisawa ◽  
Tomomi Morikawa-Ichinose ◽  
Shinichiro Niimi ◽  
...  

ABSTRACTDNA replication stress is a predominant cause of genome instability, a driver of tumorigenesis and malignant progression. Nucleoside analog-type chemotherapeutic drugs introduce DNA damage and exacerbate DNA replication stress in tumor cells. However, the mechanisms underlying tumor cytotoxicity triggered by the drugs are not fully understood. Here, we show that the fluorinated thymidine analog trifluridine (FTD), an active component of the chemotherapeutic drug trifluridine/tipiracil, delayed DNA synthesis by human replicative DNA polymerases. FTD acted as an inefficient deoxyribonucleotide triphosphate source (FTD triphosphate) and as an obstacle base (trifluorothymine) in the template DNA strand. At the cellular level, FTD decreased thymidine triphosphate in the dNTP pool and induced FTD triphosphate accumulation, resulting in replication fork stalling caused by FTD incorporation into DNA. DNA lesions involving single-stranded DNA were generated as a result of replication fork stalling, and the p53-p21 pathway was activated. Although FTD suppressed tumor cell growth irrespective of p53 status, tumor cell fate diverged at the G2/M phase transition according to p53 status; tumor cells with wild-type p53 underwent cellular senescence via mitosis skip, whereas tumor cells that lost wild-type p53 underwent apoptotic cell death via aberrant late mitosis with severely impaired separation of sister chromatids. These results suggest that DNA replication stress induced by a nucleoside analog-type chemotherapeutic drug triggers tumor cytotoxicity by determining tumor cell fate according to p53 status.SignificanceThis study identified a unique type of DNA replication stress induced by trifluridine, which directs tumor cell fate either toward cellular senescence or apoptotic cell death according to p53 status.


2021 ◽  
Author(s):  
Wuchang Zhang ◽  
Wei Liu ◽  
Lingfei Jia ◽  
Demeng Chen ◽  
Insoon Chang ◽  
...  

2021 ◽  
Author(s):  
Lin Deng ◽  
Chunlong Chen ◽  
Yunzhou Dong ◽  
Huiqiang Lou ◽  
Yuanliang Zhai

Genes ◽  
2016 ◽  
Vol 7 (8) ◽  
pp. 51 ◽  
Author(s):  
Jun Zhang ◽  
Qun Dai ◽  
Dongkyoo Park ◽  
Xingming Deng

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tara Al Zubaidi ◽  
O. H. Fiete Gehrisch ◽  
Marie-Michelle Genois ◽  
Qi Liu ◽  
Shan Lu ◽  
...  

AbstractMutant KRAS is a common tumor driver and frequently confers resistance to anti-cancer treatments such as radiation. DNA replication stress in these tumors may constitute a therapeutic liability but is poorly understood. Here, using single-molecule DNA fiber analysis, we first characterized baseline replication stress in a panel of unperturbed isogenic and non-isogenic cancer cell lines. Correlating with the observed enhanced replication stress we found increased levels of cytosolic double-stranded DNA in KRAS mutant compared to wild-type cells. Yet, despite this phenotype replication stress-inducing agents failed to selectively impact KRAS mutant cells, which were protected by CHK1. Similarly, most exogenous stressors studied did not differentially augment cytosolic DNA accumulation in KRAS mutant compared to wild-type cells. However, we found that proton radiation was able to slow fork progression and preferentially induce fork stalling in KRAS mutant cells. Proton treatment also partly reversed the radioresistance associated with mutant KRAS. The cellular effects of protons in the presence of KRAS mutation clearly contrasted that of other drugs affecting replication, highlighting the unique nature of the underlying DNA damage caused by protons. Taken together, our findings provide insight into the replication stress response associated with mutated KRAS, which may ultimately yield novel therapeutic opportunities.


2020 ◽  
Author(s):  
Takahiko Murayama ◽  
Yasuto Takeuchi ◽  
Kaoru Yamawaki ◽  
Toyoaki Natsume ◽  
Li Mengjiao ◽  
...  

2021 ◽  
Vol 14 (10) ◽  
pp. 101167
Author(s):  
Jinwen Shi ◽  
Xiaofeng Zhang ◽  
Jin'e Li ◽  
Wenwen Huang ◽  
Yini Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document