scholarly journals Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer

2017 ◽  
Vol 7 (12) ◽  
pp. 1420-1435 ◽  
Author(s):  
Scott Gettinger ◽  
Jungmin Choi ◽  
Katherine Hastings ◽  
Anna Truini ◽  
Ila Datar ◽  
...  
Author(s):  
Pradnya Dinkar Patil ◽  
Frances Shepherd ◽  
David H. Johnson

The landscape of treatments for non–small cell lung cancer (NSCLC) has evolved dramatically over the past 3 decades. A better understanding of the disease biology and identification of actionable genetic alterations heralded an era of targeted therapies that has led to unprecedented survival benefits in patients with oncogene-driven NSCLC. More recent breakthroughs in immunotherapy led to the development of immune checkpoint inhibitors that have changed the treatment paradigm for patients with advanced NSCLC because of their ability to produce durable responses, resulting in improved survival outcomes. Despite the unparalleled success of these agents, primary and acquired resistance to these therapies pose a formidable challenge. In this article, we provide an overview of the therapeutic advances in the treatment of NSCLC, mechanisms of resistance, and potential strategies to overcome resistance to targeted therapies and immune checkpoint inhibitors.


Author(s):  
Antonio Passaro ◽  
Julie Brahmer ◽  
Scott Antonia ◽  
Tony Mok ◽  
Solange Peters

A proportion of patients with lung cancer experience long-term clinical benefit with immune checkpoint inhibitors (ICIs). However, most patients develop disease progression during treatment or after treatment discontinuation. Definitions of immune resistance are heterogeneous according to different clinical and biologic features. Primary resistance and acquired resistance, related to tumor-intrinsic and tumor-extrinsic mechanisms, are identified according to previous response patterns and timing of occurrence. The clinical resistance patterns determine differential clinical approaches. To date, several combination therapies are under development to delay or prevent the occurrence of resistance to ICIs, including the blockade of immune coinhibitory signals, the activation of those with costimulatory functions, the modulation of the tumor microenvironment, and the targeting T-cell priming. Tailoring the specific treatments with distinctive biologic resistance mechanisms would be ideal to improve the design and results of clinical trial. In this review, we reviewed the available evidence on immune resistance mechanisms, clinical definitions, and management of resistance to ICIs in lung cancer. We also reviewed data on novel strategies under investigation in this setting.


Immunotherapy ◽  
2021 ◽  
Author(s):  
Joseph Zouein ◽  
Fady G Haddad ◽  
Roland Eid ◽  
Hampig R Kourie

Lung cancer is the second most common cancer worldwide and the leading cause of death among cancers. The progressive approvals of immunotherapy as first-line treatment options have helped improve cancer prognosis. However, longer follow-up has confirmed the possibility of acquired resistance to immune checkpoint inhibitors (ICIs) which can lead to late relapses. Chemotherapy can act as a priming therapy to increase a tumor’s response to immunotherapy. We aim through this review to explain the mechanism behind ICI resistance and the value of chemotherapy in escaping this resistance. Finally, all US FDA approvals regarding the management of metastatic non-small-cell lung cancer using a combination of ICIs and chemotherapy are summarized.


2020 ◽  
Vol 8 (1) ◽  
pp. e000697
Author(s):  
Kartik Sehgal ◽  
Andreas Varkaris ◽  
Hollis Viray ◽  
Paul A VanderLaan ◽  
Deepa Rangachari ◽  
...  

BackgroundHistological transformation of oncogene-driven lung adenocarcinoma to small cell lung cancer (SCLC) following treatment with tyrosine kinase inhibitors (TKIs) is a well-described phenomenon. Whether a similar transformation may drive acquired resistance to immune checkpoint inhibitors (ICPIs) in non-SCLC (NSCLC) is uncertain. Hence, tissue biopsies are not universally recommended at progression of NSCLC on ICPIs, unlike TKIs.Case presentationWe report a case of a woman in her mid-60s with a 35 pack-years tobacco history and stage IV squamous cell lung carcinoma with no targetable genomic alterations, whose disease progressed within 4 months of first line carboplatin/gemcitabine therapy. Her treatment was switched to second line nivolumab monotherapy which resulted in sustained partial response lasting 21 months. She subsequently developed rapid, bulky progression of mediastinal disease. Biopsy showed transformation to SCLC. Comparison of genomic profiling results from the initial NSCLC diagnosis and SCLC transformation revealed near-identical tumor profiles. Her disease responded to next line carboplatin/etoposide, though lasting for only 10 months. She died 14 months after detection of neuroendocrine transformation of her NSCLC.Systematic reviewWe performed a systematic review of the literature to identify similar cases of NSCLC-to-small cell transformation on ICPIs. Nine patients, including our index case, were identified, with seven (77.8%) on nivolumab and two (22.2%) on pembrolizumab monotherapy. Median survival time since small cell transformation was 13.0 months (95% CI 2.0 to 16.0). Using our patient case as a framework, we further discuss the lack of consensus criteria to distinguish small cell transformation from de novo metachronous SCLC.ConclusionsHistological transformation to SCLC is a potential mechanism of acquired resistance to ICPIs in NSCLC. Repeat tissue biopsies should be considered at the time of progression, similar to oncogene-directed therapies. Prospective larger studies are warranted to further characterize NSCLC-to-small cell transformation on ICPIs using molecular fingerprinting with paired tumor genomic profiles, evaluation of neuroendocrine features at baseline and consideration of initial response.


Sign in / Sign up

Export Citation Format

Share Document