Lithium Chloride Preconditioning Optimizes Skeletal Myoblast Functions for Cellular Cardiomyoplasty in vitro via Glycogen Synthase Kinase-3β/β-Catenin Signaling

2009 ◽  
Vol 190 (1) ◽  
pp. 11-19 ◽  
Author(s):  
W.J. Du ◽  
J.K. Li ◽  
Q.Y. Wang ◽  
J.B. Hou ◽  
B. Yu
Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


1996 ◽  
Vol 313 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Alexander V. SKURAT ◽  
Peter J. ROACH

Glycogen synthase can be inactivated by sequential phosphorylation at the C-terminal residues Ser652 (site 4), Ser648 (site 3c), Ser644 (site 3b) and Ser640 (site 3a) catalysed by glycogen synthase kinase-3. In vitro, glycogen synthase kinase-3 action requires that glycogen synthase has first been phosphorylated at Ser656 (site 5) by casein kinase II. Recently we demonstrated that inactivation is linked only to phosphorylation at site 3a and site 3b, and that, in COS cells, modification of these sites can occur by alternative mechanisms independent of any C-terminal phosphorylations [Skurat and Roach (1995) J. Biol. Chem. 270, 12491-12497]. To address these mechanisms multiple Ser → Ala mutations were introduced in glycogen synthase such that only site 3a or site 3b remained intact. Additional mutation of Arg637 → Gln eliminated phosphorylation of site 3a, indicating that Arg637 may be important for recognition of site 3a by its corresponding protein kinase(s). Similarly, additional mutation of Pro645 → Ala eliminated phosphorylation of site 3b, indicating a possible involvement of ‘proline-directed’ protein kinase(s). Mutation of Arg637 alone did not activate glycogen synthase as expected from the loss of phosphorylation at site 3a. Rather, mutation of both Arg637 and the Ser → Ala substitution at site 3b was required for substantial activation. The results suggest that sites 3a and 3b can be phosphorylated independently of one another by distinct protein kinases. However, phosphorylation of site 3b can potentiate phosphorylation of site 3a, by an enzyme such as glycogen synthase kinase-3.


2015 ◽  
Vol 12 (10) ◽  
pp. 805-810 ◽  
Author(s):  
Liu Li ◽  
Hao Song ◽  
Liang Zhong ◽  
Rong Yang ◽  
Xiao-Qun Yang ◽  
...  

2004 ◽  
Vol 3 (5) ◽  
pp. 1307-1319 ◽  
Author(s):  
Nedra F. Wilson ◽  
Paul A. Lefebvre

ABSTRACT Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.


2006 ◽  
Vol 26 (15) ◽  
pp. 5784-5796 ◽  
Author(s):  
Alexander Hergovich ◽  
Joanna Lisztwan ◽  
Claudio R. Thoma ◽  
Christiane Wirbelauer ◽  
Robert E. Barry ◽  
...  

ABSTRACT Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is linked to the development of tumors of the eyes, kidneys, and central nervous system. VHL encodes two gene products, pVHL30 and pVHL19, of which one, pVHL30, associates functionally with microtubules (MTs) to regulate their stability. Here we report that pVHL30 is a novel substrate of glycogen synthase kinase 3 (GSK3) in vitro and in vivo. Phosphorylation of pVHL on serine 68 (S68) by GSK3 requires a priming phosphorylation event at serine 72 (S72) mediated in vitro by casein kinase I. Functional analysis of pVHL species carrying nonphosphorylatable or phosphomimicking mutations at S68 and/or S72 reveals a central role for these phosphorylation events in the regulation of pVHL's MT stabilization (but not binding) activity. Taken together, our results identify pVHL as a novel priming-dependent substrate of GSK3 and suggest a dual-kinase mechanism in the control of pVHL's MT stabilization function. Since GSK3 is a component of multiple signaling pathways that are altered in human cancer, our results further imply that normal operation of the GSK3-pVHL axis may be a critical aspect of pVHL's tumor suppressor mechanism through the regulation of MT dynamics.


Sign in / Sign up

Export Citation Format

Share Document