Chromosomal Variability among Allopatric Populations of Erythrinidae Fish Hoplias malabaricus: Mapping of Three Classes of Repetitive DNAs

2009 ◽  
Vol 125 (2) ◽  
pp. 132-141 ◽  
Author(s):  
M.B. Cioffi ◽  
C. Martins ◽  
L. Centofante ◽  
U. Jacobina ◽  
L.A.C. Bertollo
2010 ◽  
Vol 8 (2) ◽  
pp. 361-368 ◽  
Author(s):  
Daniel Rodrigues Blanco ◽  
Roberto Laridondo Lui ◽  
Luiz Antonio Carlos Bertollo ◽  
Vladimir Pavan Margarido ◽  
Orlando Moreira Filho

Three populations of the group Hoplias malabaricus from the hydrographic basins of the São Francisco, Araguaia/Tocantins and Xingu Rivers in Brazil were analyzed using classic cytogenetic methods (Giemsa staining, C-banding and Ag-NORs) and molecular methods (fluorescent in situ hybridization with 18S rDNA, 5S rDNA and 5SHindIII satellite DNA probes). The chromosome markers allowed the characterization of these populations as belonging to karyomorph A and the detection of inter-population divergences. These differences likely stem from different evolutionary histories resulting from geographic isolation between populations associated to the dispersive mode of these organisms, reinforcing genetic diversity in the group Hoplias malabaricus.


2015 ◽  
Vol 24 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Natália Milhomem Alcântara ◽  
Marcos Tavares-Dias

This study compared the parasite communities of Hoplias malabaricus and Hoplerythrinus unitaeniatus from Amazon river system. Hoplias malabaricus were infected by Ichthyophthirius multifiliis, Piscinoodinium pillulare, Tetrahymena sp., Urocleidoides eremitus, Braga patagonica, metacercariae of Clinostomum marginatum, Procamallanus(Spirocamallanus) inopinatus, larvae of Contracaecum sp. and larvae of Nomimoscolex matogrossensis. Hoplerythrinus unitaeniatus were also infected by these same species of protozoans, nematodes, digeneans and cestodes, except for Tetrahymena sp. and B. patagonica, which were replaced by Argulus pestifer, Urocleidoides sp., Whittingtonocotylecaetei, Whittingtonocotyle jeju and Gorytocephalus spectabilis. For both hosts, I. multifiliis and P. pillulare were the predominant parasites. Most of the parasites presented an overdispersion. Parasite species richness, Brillouin diversity, evenness and Berger-Parker dominance were similar for the two hosts. The length and weight of H. malabaricusshowed a positive correlation with the abundance of U. eremitusand Contracaecum sp., while the weight of H. unitaeniatus showed a positive correlation with the abundance of I. multifiliis. The diversity of ectoparasites seemed to be influenced by the behavior of these two hosts. This was shown by the similar parasite communities and was characterized by low species diversity, low evenness and low richness, and by a high prevalence of ectoparasites.


Author(s):  
Florian P. Schiestl ◽  
Erika A. Wallin ◽  
John J. Beck ◽  
Magne Friberg ◽  
John N. Thompson

AbstractVolatiles are of key importance for host-plant recognition in insects. In the pollination system of Lithophragma flowers and Greya moths, moths are highly specialized on Lithophragma, in which they oviposit and thereby pollinate the flowers. Floral volatiles in Lithophragma are highly variable between species and populations, and moths prefer to oviposit into Lithophragma flowers from populations of the local host species. Here we used gas chromatography coupled with electroantennographic detection (GC-EAD) to test whether Greya moths detect specific key volatiles or respond broadly to many volatiles of Lithophragma flowers. We also addressed whether olfactory detection in Greya moths varies across populations, consistent with a co-evolutionary scenario. We analyzed flower volatile samples from three different species and five populations of Lithophragma occurring across a 1400 km range in the Western USA, and their sympatric female Greya politella moths. We showed that Greya politella detect a broad range of Lithophragma volatiles, with a total of 23 compounds being EAD active. We chemically identified 15 of these, including the chiral 6, 10, 14-trimethylpentadecan-2-one (hexahydrofarnesyl acetone), which was not previously detected in Lithophragma. All investigated Lithophragma species produced the (6R, 10R)-enantiomer of this compound. We showed that Greya moths detected not only volatiles of their local Lithophragma plants, but also those from allopatric populations/species that they not encounter in local populations. In conclusion, the generalized detection of volatiles and a lack of co-divergence between volatiles and olfactory detection may be of selective advantage for moths in tracking hosts with rapidly evolving, chemically diverse floral volatiles.


2020 ◽  
Vol 66 (3-4) ◽  
pp. 151-179
Author(s):  
L. Lee Grismer ◽  
L. Wood Perry ◽  
Marta S. Grismer ◽  
Evan S.H. Quah ◽  
Myint Kyaw Thura ◽  
...  

The historical accuracy of building taxonomies is improved when they are based on phylogenetic inference (i.e., the resultant classifications are less apt to misrepresent evolutionary history). In fact, taxonomies inferred from statistically significant diagnostic morphological characters in the absence of phylogenetic considerations, can contain non-monophyletic lineages. This is especially true at the species level where small amounts of gene flow may not preclude the evolution of localized adaptions in different geographic areas while underpinning the paraphyletic nature of each population with respect to the other. We illustrate this point by examining genetic and morphological variation among three putatively allopatric populations of the granite-dwelling Bent-toed Gecko Cyrtodactylus aequalis from hilly regions in southeastern Myanmar. In the absence of molecular phylogenetic inference, a compelling argument for three morphologically diagnosable species could be marshaled. However, when basing the morphological analyses of geographic variation on a molecular phylogeny, there is a more compelling argument that only one species should be recognized. We are cognizant of the fact however, that when dealing with rare species or specimens for which no molecular data are possible, judicious morphological analyses are the only option—and the desired option given the current worldwide biodiversity crisis.


2021 ◽  
Vol 239 ◽  
pp. 105940
Author(s):  
Laura Simões Andrade ◽  
Domingos Garrone-Neto ◽  
Manuela Alves Nobre Sales ◽  
Luciana Rodrigues de Souza-Bastos ◽  
Ursulla Pereira Souza ◽  
...  

Crustaceana ◽  
1993 ◽  
Vol 65 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Barbara A. Stewart

AbstractThe use of protein electrophoretic data for determining species boundaries in amphipods is addressed. Analysis of published literature on genetic differentiation in amphipods showed that pairs of allopatric populations which have genetic identities (I) above a value of 0.85 probably represent intraspecific populations, whereas pairs of populations which have genetic identities below about 0.45 probably represent different species. It was recommended that if I values fall between 0.45 and 0.85, additional factors such as evidence of a lack of gene flow between the populations, and concordant morphological variation should be considered.


2013 ◽  
Vol 6 (1) ◽  
pp. 51 ◽  
Author(s):  
Weerayuth Supiwong ◽  
Thomas Liehr ◽  
Marcelo B Cioffi ◽  
Arunrat Chaveerach ◽  
Nadezda Kosyakova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document