Characterization of Cord-Blood-Derived Human Mast Cells Cultured in the Presence of Steel Factor and lnterleukin-6

1995 ◽  
Vol 107 (1-3) ◽  
pp. 63-65 ◽  
Author(s):  
Hirohisa Saito ◽  
Motohiro Ebisawa ◽  
Naoya Sakaguchi ◽  
Takebumi Onda ◽  
Yoji Iikura ◽  
...  
Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1807-1820 ◽  
Author(s):  
See-Ying Tam ◽  
Mindy Tsai ◽  
Masao Yamaguchi ◽  
Koji Yano ◽  
Joseph H. Butterfield ◽  
...  

Abstract Nerve growth factor (NGF ) can influence mast cell development and function in murine rodents by interacting with its receptors on mast cells. We now report the identification of mRNA transcripts of full-length tyrosine kinase-containing trkA, trkB, and trkC neurotrophin receptor genes in HMC-1 human mast cell leukemia cells. Although HMC-1 cells lacked p75 mRNA, they expressed transcripts for the exon-lacking splice variant of trkA (trkAI), truncated trkB (trkB.T1), and truncated trkC. By flow cytometry, HMC-1 cells exhibited expression of TrkA, TrkB, and TrkC receptor proteins containing full-length tyrosine kinase domains. NGF stimulation of HMC-1 cells induced tyrosine phosphorylation of TrkA protein, increased expression of the early response genes c-fos and NGF1-A, and activation of ERK-mitogen–activated protein (MAP) kinase, results which indicate that TrkA receptors in HMC-1 cells are fully functional. Highly purified populations of human lung mast cells expressed mRNAs for trkA, trkB and trkC, whereas preparations of human umbilical cord blood-derived mast cells expressed mRNAs for trkA and trkC, but not trkB. Moreover, preparations of human umbilical cord blood-derived immature mast cells not only expressed mRNA transcript and protein for TrkA, but exhibited significantly higher numbers of chymase-positive cells after the addition of NGF to their culture medium for 3 weeks. In addition, HMC-1 cells expressed mRNAs for NGF, brain-derived neurotrophic factor (BDNF ), and neurotrophin-3 (NT-3), the cognate ligands for TrkA, TrkB, and TrkC, whereas NGF and BDNF transcripts were detectable in human umbilical cord blood mast cell preparations. Taken together, our findings show that human mast cells express a functional TrkA receptor tyrosine kinase and indicate that NGF may be able to promote certain aspects of mast cell development and/or maturation in humans. Our studies also raise the possibility that human mast cells may represent a potential source for neurotrophins.


Blood ◽  
1999 ◽  
Vol 93 (10) ◽  
pp. 3338-3346 ◽  
Author(s):  
Duraisamy Kempuraj ◽  
Hirohisa Saito ◽  
Azusa Kaneko ◽  
Kazumi Fukagawa ◽  
Masaharu Nakayama ◽  
...  

Human mast cells are derived from CD34+ hematopoietic cells present in cord blood, bone marrow, and peripheral blood. However, little is known about the properties of the CD34+ cells. We demonstrated here that mast cell progenitors that have distinct phenotypes from other hematopoietic cell types are present in cord blood by culturing single, sorted CD34+ cells in 96-well plates or unsorted cells in methylcellulose. The CD34+ mast cell-committed progenitors often expressed CD38 and often lacked HLA-DR, whereas CD34+ erythroid progenitors often expressed both CD38 and HLA-DR and CD34+ granulocyte-macrophage progenitors often had CD33 and sometimes expressed CD38. We then cultured single cord blood-derived CD34+CD38+ cells under conditions optimal for mast cells and three types of myeloid cells, ie, basophils, eosinophils, and macrophages. Of 1,200 CD34+CD38+ cells, we were able to detect 13 pure mast cell colonies and 52 pure colonies consisting of either one of these three myeloid cell types. We found 17 colonies consisting of two of the three myeloid cell types, whereas only one colony consisted of mast cells and another cell type. These results indicate that human mast cells develop from progenitors that have unique phenotypes and that committed mast cell progenitors develop from multipotent hematopoietic cells through a pathway distinct from myeloid lineages including basophils, which have many similarities to mast cells.


2002 ◽  
Vol 128 (2) ◽  
pp. 142-150 ◽  
Author(s):  
Hiroaki Inamura ◽  
Motohiro Kurosawa ◽  
Akira Okano ◽  
Hiroyuki Kayaba ◽  
Masataka Majima

Sign in / Sign up

Export Citation Format

Share Document