scholarly journals Analysis of the Adaptation Capacity of Staphylococcus aureus to Commonly Used Antiseptics by Microplate Laser Nephelometry

2012 ◽  
Vol 25 (6) ◽  
pp. 288-297 ◽  
Author(s):  
C. Wiegand ◽  
M. Abel ◽  
P. Ruth ◽  
U.-C. Hipler
2019 ◽  
Author(s):  
Gérald Kénanian ◽  
Claire Morvan ◽  
Antonin Weckel ◽  
Amit Pathania ◽  
Jamila Anba-Mondoloni ◽  
...  

SummaryDevelopment of fatty acid synthesis pathway (FASII) inhibitors against the major human pathogen Staphylococcus aureus hinges on the accepted but unproven postulate that an endogenously synthesized branched chain fatty acid is required to complete membrane phospholipids. Evidence for anti-FASII efficacy in animal models supported this view. However, restricted test conditions used previously to show FASII antibiotic efficacy led us to investigate these questions in a broader, host-relevant context. We report that S. aureus rapidly adapts to FASII antibiotics without FASII mutations when exposed to host environments. Treatment with a lead FASII antibiotic upon signs of infection, rather than just after inoculation as commonly practiced, failed to eliminate S. aureus from infected organs in a septicemia model. In vitro, addition of serum facilitated rapid S. aureus FASII bypass by environmental fatty acid (eFA) replacement in phospholipids. Serum lowers membrane stress, leading to increased retention of the two substrates required for exogenous fatty acid (eFA) utilization. In these conditions, eFA occupy both phospholipid positions 1 and 2, regardless of anti-FASII selection. This study revises conclusions on S. aureus fatty acid requirements by disproving the postulate of fatty acid stringency, and reveals an Achilles’ heel for using FASII antibiotics to treat infection in monotherapy.Significance statementAntibiotic discovery to overcome treatment failure has huge socio-medical and economic stakes. The fatty acid synthesis (FASII) pathway is considered an ideal druggable target against the human pathogen Staphylococcus aureus, based on evidence of anti-FASII efficacy in infection models, and the postulate that S. aureus synthesizes an irreplaceable fatty acid. We report that S. aureus alters its behavior in host-relevant conditions. Administering FASII antibiotics upon signs of infection, rather than just after inoculation as frequently practiced, failed to clear septicemic infections. In serum, S. aureus rapidly overcomes FASII antibiotics by incorporating alternative fatty acids. We conclude that previously, premature antibiotic treatments and experimental constraints masked S. aureus antibiotic adaptation capacity. These findings should help streamline future drug development programs.


Author(s):  
Masaatsu Koike ◽  
Koichi Nakashima ◽  
Kyoko Iida

Penicillin exerts the activity to inhibit the peptide cross linkage between each polysaccharide backbone at the final stage of wall-peptidoglycan biosynthesis of bacteria. Morphologically, alterations of the septal wall and mesosome in gram-positive bacteria, which were occurred in early time after treatment with penicillin, have been observed. In this experiment, these alterations were cytochemically investigated by means of silver-methenamine staining after periodate oxidation, which is applied for detection of localization of wall mucopolysaccharide.Staphylococcus aureus strain 209P treated with 100 u/ml of penicillin G was divided into two aliquotes. One was fixed by Kellenberger-Ryter's OSO4 fixative at 30, 60 and 120 min after addition of the antibiotic, dehydrated through alcohol series, and embedded in Epon 812 (Specimen A). The other was fixed by 21 glutaraldehyde, dehydrated through glycolmethacrylate series and embedded in glycolmethacrylate mixture, according to Bernhard's method (Specimen B).


Author(s):  
Margaret Hukee

Gold labeling of two antigens (double labeling) is often done on two section surfaces separated by section thickness. Whether labeling is done on both sides of the same section or on two parallel surfaces separated by section thickness (PSSST), comparable results are dependent on an equal number of epitopes being exposed at each surface. We propose a method to study protein labeling within the same field of proteins, by examining two directly adjacent surfaces that were split during sectioning. The number of labeling sites on adjacent surfaces (AS) were compared to sites on PSSST surfaces in individual bacteria.Since each bacteria needed to be recognizable in all three section surfaces, one-hole grids were used for labeling. One-hole grids require a supporting membrane and excessive handling during labeling often ruptures the membrane. To minimize handling, a labeling chamber was designed that is inexpensive, disposable, minimizes contamination, and uses a minimal amount of solution.


VASA ◽  
2013 ◽  
Vol 42 (5) ◽  
pp. 382-386
Author(s):  
Karim Gariani ◽  
Marc Righini ◽  
Marco Roffi ◽  
Gino Gemayel ◽  
Damiano Mugnai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document