exogenous fatty acid
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Deboever Estelle ◽  
Van Aubel Géraldine ◽  
Rondelli Valeria ◽  
Koutsioumpas Alexandros ◽  
Mathelie‐Guinlet Marion ◽  
...  

Author(s):  
Estelle Deboever ◽  
Géraldine van Aubel ◽  
Valeria Rondelli ◽  
Alexandros Koutsioumpas ◽  
Marion Mathelie-Guinlet ◽  
...  

Oxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs). Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this work, the potential of 13(S)-hydroperoxyoctadeca-(9Z,11E)-dienoic acid (13-HPOD) and 13(S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoic acid (13-HPOT), as plant defence elicitors and the underlying mechanism of action are investigated. Arabidopsis thaliana leaf resistance to Botrytis cinerea was observed after root application with HPOs. They also activate early immunity-related defence responses, like ROS. As previous studies have demonstrated their ability to interact with plant plasma membranes (PPM), we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. Relationship between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events


2021 ◽  
pp. mbc.E20-11-0695
Author(s):  
Santosh Adhikari ◽  
Joe Moscatelli ◽  
Elias M. Puchner

Lipid droplets (LDs) are dynamic organelles for lipid storage and homeostasis. Cells respond to metabolic changes by regulating the spatial distribution of LDs and enzymes required for LD growth and turnover. The small size of LDs precludes the observation of their associated enzyme densities and dynamics with conventional fluorescence microscopy. Here, we employ quantitative photo-activated localization microscopy to study the density of the fatty acid activating enzyme Faa4 on LDs in live yeast cells with single-molecule sensitivity and 30 nm resolution. During the log phase LDs co-localize with the Endoplasmic Reticulum (ER) where their emergence and expansion is mediated by the highest observed Faa4 densities. During transition to the stationary phase LDs with a ∼2-fold increased surface area translocate to the vacuolar surface and lumen and exhibit a ∼2.5-fold increase in Faa4 density. The increased Faa4 density on LDs further suggests its role in LD expansion, is caused by its ∼5-fold increased expression level and is specific to exogenous fatty acid chain-lengths. When lipolysis is induced by refreshed medium, Faa4 shuttles through ER- and lipophagy to the vacuole, where it may activate fatty acids for membrane expansion and degrade to reset cellular Faa4 abundance to levels in the log phase. [Media: see text] [Media: see text] [Media: see text] [Media: see text]


Author(s):  
Estelle Deboever ◽  
Géraldine van Aubel ◽  
Valeria Rondelli ◽  
Alexandros Koutsioumpas ◽  
Marion Mathelie-Guinlet ◽  
...  

Fatty acid hydroperoxides (HPOs) are amphiphilic molecules naturally produced by plants in stressed conditions and involved in plant immunity as signalling molecules. Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this work, the potential of two HPO forms, 13-HPOD and 13-HPOT, as plant defence elicitors and the underlying mechanism of action are investigated. Both HPOs trigger Arabidopsis innate immunity. They increase plant resistance to the pathogenic fungi Botrytis cinerea and activate early immunity-related defence responses, like ROS production. As our previous study has suggested that HPOs are able to interact with the plant plasma membrane (PPM) lipid fraction, we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. 13-HPOT, with an additional double bond compared to 13-HPOD, exerts a higher effect by fluidifying and reducing the thickness of the bilayer. Correlation between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i19-i19
Author(s):  
Divya Ravi ◽  
Carmen del Genio ◽  
Haider Ghiasuddin ◽  
Arti Gaur

Abstract Glioblastomas (GBM) or Stage IV gliomas, are the most aggressive of primary brain tumors and are associated with high mortality and morbidity. Patients diagnosed with this lethal cancer have a dismal survival rate of 14 months and a 5-year survival rate of 5.6% despite a multimodal therapeutic approach, including surgery, radiation therapy, and chemotherapy. Aberrant lipid metabolism, particularly abnormally active de novo fatty acid synthesis, is recognized to have a key role in tumor progression and chemoresistance in cancers. Previous studies have reported a high expression of fatty acid synthase (FASN) in patient tumors, leading to multiple investigations of FASN inhibition as a treatment strategy. However, none of these have developed as efficacious therapies. Furthermore, when we profiled FASN expression using The Cancer Genome Atlas (TCGA) we determined that high FASN expression in GBM patients did not confer a worse prognosis (HR: 1.06; p-value: 0.51) and was not overexpressed in GBM tumors compared to normal brain. Therefore, we need to reexamine the role of exogenous fatty acid uptake over de novofatty acid synthesis as a potential mechanism for tumor progression. Our study aims to measure and compare fatty acid oxidation (FAO) of endogenous and exogenous fatty acids between GBM patients and healthy controls. Using TCGA, we have identified the overexpression of multiple enzymes involved in mediating the transfer and activation of long-chain fatty acids (LCFA) in GBM tumors compared to normal brain tissue. We are currently conducting metabolic flux studies to (1) assess the biokinetics of LCFA degradation and (2) establish exogenous versus endogenous LCFA preferences between patient-derived primary GBM cells and healthy glial and immune cells during steady state and glucose-deprivation.


2021 ◽  
Vol 12 ◽  
Author(s):  
David W. McMillan ◽  
Gregory C. Henderson ◽  
Mark S. Nash ◽  
Kevin A. Jacobs

Spinal cord injury (SCI) results in disordered fat metabolism. Autonomic decentralization might contribute to dyslipidemia in SCI, in part by influencing the uptake of dietary fats through the gut-lymph complex. However, the neurogenic contributions to dietary fat metabolism are unknown in this population. We present a subset of results from an ongoing registered clinical trial (NCT03691532) related to dietary fat absorption. We fed a standardized (20 kcal⋅kgFFM–1) liquid meal tolerance test (50% carb, 35% fat, and 15% protein) that contained stable isotope lipid tracer (5 mg⋅kgFFM–1 [U-13C]palmitate) to persons with and without motor complete thoracic SCI. Blood samples were collected at six postprandial time points over 400 min. Changes in dietary fatty acid incorporated into the triacylglycerol (TAG) pool (“exogenous TAG”) were used as a marker of dietary fat absorption. This biomarker showed that those with paraplegia had a lower amplitude than non-injured participants at Post240 (52.4 ± 11.0 vs. 77.5 ± 16.0 μM), although this failed to reach statistical significance (p = 0.328). However, group differences in the time course of absorption were notable. The injury level was also strongly correlated with time-to-peak exogenous TAG concentration (r = −0.806, p = 0.012), with higher injuries resulting in a slower rise in exogenous TAG. This time course documenting exogenous TAG change is the first to show a potential neurogenic alteration in SCI dietary fat absorption.


2020 ◽  
Author(s):  
Jae Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Sestan-Pesa ◽  
Nicole Kilian ◽  
...  

ABSTRACTThe bioenergetic function of mitochondrial fission is associated with uncoupled respiration or elimination of damaged mitochondria to maintain a healthy mitochondrial population. In the presence of a high abundance of exogenous fatty acids, cells can either store fatty acids in lipid droplets or oxidize them in mitochondria. Even though carnitine palmitoyltransferase-1 (CPT1) controls the respiratory capacity of mitochondria in fatty acid oxidation, we observed that it did not dictate the balance of storage and usage of lipids in HeLa cells. On the other hand, inhibition of mitochondrial fission by silencing dynamic-related protein 1 (DRP1) resulted in an increase in fatty acid content of lipid droplets and a decrease in fatty acid oxidation. Mitochondrial fission was not only reflective of the amount of exogenous fatty acid being processed by mitochondria, but also found to be actively involved in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.


2019 ◽  
Author(s):  
Gérald Kénanian ◽  
Claire Morvan ◽  
Antonin Weckel ◽  
Amit Pathania ◽  
Jamila Anba-Mondoloni ◽  
...  

SummaryDevelopment of fatty acid synthesis pathway (FASII) inhibitors against the major human pathogen Staphylococcus aureus hinges on the accepted but unproven postulate that an endogenously synthesized branched chain fatty acid is required to complete membrane phospholipids. Evidence for anti-FASII efficacy in animal models supported this view. However, restricted test conditions used previously to show FASII antibiotic efficacy led us to investigate these questions in a broader, host-relevant context. We report that S. aureus rapidly adapts to FASII antibiotics without FASII mutations when exposed to host environments. Treatment with a lead FASII antibiotic upon signs of infection, rather than just after inoculation as commonly practiced, failed to eliminate S. aureus from infected organs in a septicemia model. In vitro, addition of serum facilitated rapid S. aureus FASII bypass by environmental fatty acid (eFA) replacement in phospholipids. Serum lowers membrane stress, leading to increased retention of the two substrates required for exogenous fatty acid (eFA) utilization. In these conditions, eFA occupy both phospholipid positions 1 and 2, regardless of anti-FASII selection. This study revises conclusions on S. aureus fatty acid requirements by disproving the postulate of fatty acid stringency, and reveals an Achilles’ heel for using FASII antibiotics to treat infection in monotherapy.Significance statementAntibiotic discovery to overcome treatment failure has huge socio-medical and economic stakes. The fatty acid synthesis (FASII) pathway is considered an ideal druggable target against the human pathogen Staphylococcus aureus, based on evidence of anti-FASII efficacy in infection models, and the postulate that S. aureus synthesizes an irreplaceable fatty acid. We report that S. aureus alters its behavior in host-relevant conditions. Administering FASII antibiotics upon signs of infection, rather than just after inoculation as frequently practiced, failed to clear septicemic infections. In serum, S. aureus rapidly overcomes FASII antibiotics by incorporating alternative fatty acids. We conclude that previously, premature antibiotic treatments and experimental constraints masked S. aureus antibiotic adaptation capacity. These findings should help streamline future drug development programs.


Sign in / Sign up

Export Citation Format

Share Document