Structure and Conformation Related to the Activity of Peptide Hormones

2015 ◽  
pp. 207-220 ◽  
Author(s):  
Victor J. Hruby
Keyword(s):  
2015 ◽  
Vol 58 ◽  
pp. 115-131 ◽  
Author(s):  
Ayane Motomitsu ◽  
Shinichiro Sawa ◽  
Takashi Ishida

The ligand–receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone–receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.


1966 ◽  
Vol 51 (1) ◽  
pp. 88-94 ◽  
Author(s):  
A. Villanueva ◽  
S. J. H. Ashcroft ◽  
J. P. Felber

ABSTRACT The synthetic ACTH peptides β1–39 and β1–24 stimulated lipolysis as determined by the rat epididymal fat pad in vitro. The stimulating effect of these peptides was diminished by prior incubation of the peptides with antibodies produced by the guinea-pig against ACTH. The stimulating effect of these hormones was also diminished by the double antibody system used in the radio-immunoassay of ACTH and other peptide hormones, in which incubation with antiserum is followed by precipitation of the antigen-antibody complex by rabbit anti-guinea-pig-γ-globulin.


1999 ◽  
Vol 19 (3) ◽  
pp. 900-905 ◽  
Author(s):  
Weiping Han ◽  
Danqing Li ◽  
Amy K. Stout ◽  
Koichi Takimoto ◽  
Edwin S. Levitan

Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 227-237 ◽  
Author(s):  
Lowell Y M Rayburn ◽  
Holly C Gooding ◽  
Semil P Choksi ◽  
Dhea Maloney ◽  
Ambrose R Kidd ◽  
...  

Abstract Biosynthesis of most peptide hormones and neuropeptides requires proteolytic excision of the active peptide from inactive proprotein precursors, an activity carried out by subtilisin-like proprotein convertases (SPCs) in constitutive or regulated secretory pathways. The Drosophila amontillado (amon) gene encodes a homolog of the mammalian PC2 protein, an SPC that functions in the regulated secretory pathway in neuroendocrine tissues. We have identified amon mutants by isolating ethylmethanesulfonate (EMS)-induced lethal and visible mutations that define two complementation groups in the amon interval at 97D1 of the third chromosome. DNA sequencing identified the amon complementation group and the DNA sequence change for each of the nine amon alleles isolated. amon mutants display partial embryonic lethality, are defective in larval growth, and arrest during the first to second instar larval molt. Mutant larvae can be rescued by heat-shock-induced expression of the amon protein. Rescued larvae arrest at the subsequent larval molt, suggesting that amon is also required for the second to third instar larval molt. Our data indicate that the amon proprotein convertase is required during embryogenesis and larval development in Drosophila and support the hypothesis that AMON acts to proteolytically process peptide hormones that regulate hatching, larval growth, and larval ecdysis.


Sign in / Sign up

Export Citation Format

Share Document