processing protease
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 17)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Markéta Linhartová ◽  
Petra Skotnicová ◽  
Kaisa Hakkila ◽  
Martin Tichý ◽  
Josef Komenda ◽  
...  

Type IV pili are bacterial surface-exposed filaments that are built up by small monomers called pilin proteins. Pilins are synthesized as longer precursors (prepilins), the N-terminal signal peptide of which must be removed by the processing protease PilD. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking the PilD protease is not capable of photoautotrophic growth because of the impaired function of Sec translocons. Here, we isolated phototrophic suppressor strains of the original ΔpilD mutant and, by sequencing their genomes, identified secondary mutations in the SigF sigma factor, the γ subunit of RNA polymerase, the signal peptide of major pilin PilA1, and in the pilA1-pilA2 intergenic region. Characterization of suppressor strains suggests that, rather than the total prepilin level in the cell, the presence of non-glycosylated PilA1 prepilin is specifically harmful. We propose that the restricted lateral mobility of the non-glycosylated PilA1 prepilin causes its accumulation in the translocon-rich membrane domains, which attenuates the synthesis of membrane proteins.


2021 ◽  
Author(s):  
Dolonchapa Chakraborty ◽  
Andrew J. Darwin

The Pseudomonas aeruginosa lipoprotein LbcA was discovered because it copurified with and promoted the activity of CtpA, a carboxyl-terminal processing protease (CTP) required for type III secretion system function, and for virulence in a mouse model of acute pneumonia. In this study we explored the role of LbcA by determining its effect on the proteome and its participation in protein complexes. lbcA and ctpA null mutations had strikingly similar effects on the proteome, suggesting that assisting CtpA might be the most impactful role of LbcA in the bacterial cell. Independent complexes containing LbcA and CtpA, or LbcA and substrate, were isolated from P. aeruginosa cells, indicating that LbcA facilitates proteolysis by recruiting the protease and its substrates independently. An unbiased examination of proteins that copurified with LbcA revealed an enrichment for proteins associated with the cell wall. One of these copurification partners was found to be a new CtpA substrate, and the first substrate that is not a peptidoglycan hydrolase. Many of the other LbcA copurification partners are known or predicted peptidoglycan hydrolases. However, some of these LbcA copurification partners were not cleaved by CtpA, and an in vitro assay revealed that while CtpA and all of its substrates bound to LbcA directly, these non-substrates did not. Subsequent experiments suggested that the non substrates might co-purify with LbcA by participating in multi-enzyme complexes containing LbcA-binding CtpA substrates. IMPORTANCE Carboxyl-terminal processing proteases (CTPs) are widely conserved and associated with the virulence of several bacteria, including CtpA in Pseudomonas aeruginosa . CtpA copurifies with the uncharacterized lipoprotein, LbcA. This study shows that the most impactful role of LbcA might be to promote CtpA-dependent proteolysis, and that it achieves this as a scaffold for CtpA and its substrates. It also reveals that LbcA copurification partners are enriched for cell wall-associated proteins, one of which is a novel CtpA substrate. Some of the LbcA copurification partners are not cleaved by CtpA, but might copurify with LbcA because they participate in multi-enzyme complexes containing CtpA substrates. These findings are important, because CTPs and their associated proteins affect peptidoglycan remodeling and virulence in multiple species.


2021 ◽  
Author(s):  
Huilin Li ◽  
Hao-Chi Hsu ◽  
Michelle Wang ◽  
Amanda Kovach ◽  
Andrew J Darwin

Pseudomonas aeruginosa CtpA is a carboxyl terminal–processing protease that partners with the outer membrane lipoprotein LbcA to degrade cell wall cross-link hydrolases. This activity plays an important role in supporting P. aeruginosa virulence. However, almost nothing is known about the molecular mechanisms underlying CtpA and LbcA function. Here, we used structural analysis to show that CtpA alone assembles into an inactive hexamer comprising a trimer of dimers, which limits its substrate access and prevents nonspecific degradation. The adaptor protein LbcA is a right-handed open spiral with 11 tetratricopeptide repeats, which might wrap around a substrate to deliver it to CtpA for degradation. We found that up to three LbcA molecules can bind to one CtpA hexamer to assemble a giant, active protease complex that degrades its peptidoglycan hydrolase substrates both in vitro and in vivo. This work reveals an intricate protease activation mechanism that is substrate delivery-dependent and enables targeted removal of the peptidoglycan hydrolase substrates.


2021 ◽  
Author(s):  
Dolonchapa Chakraborty ◽  
Andrew J Darwin

The Pseudomonas aeruginosa lipoprotein LbcA was discovered because it copurified with and promoted the activity of CtpA, a carboxyl-terminal processing protease (CTP) required for type III secretion system function, and for virulence in a mouse model of acute pneumonia. In this study we explored the role of LbcA by determining its effect on the proteome and its participation in protein complexes. lbcA and ctpA null mutations had strikingly similar effects on the proteome, suggesting that facilitating CtpA might be the most impactful role of LbcA in the bacterial cell. Independent complexes containing LbcA and CtpA, or LbcA and substrate, were isolated from P. aeruginosa cells, indicating that LbcA facilitates proteolysis by recruiting the protease and its substrates independently. An unbiased examination of proteins that copurified with LbcA revealed an enrichment for proteins associated with the cell wall. One of these copurification partners was found to be a new CtpA substrate, and the first substrate that is not a peptidoglycan hydrolase. Many of the other LbcA copurification partners are known or predicted peptidoglycan hydrolases. However, some of these LbcA copurification partners were not cleaved by CtpA, and an in vitro assay revealed that while CtpA and all of its substrates bound to LbcA directly, these non-substrates did not. Subsequent experiments suggested that the non substrates might co-purify with LbcA by participating in multi-enzyme complexes containing LbcA-binding CtpA substrates.


2021 ◽  
Vol 9 (6) ◽  
pp. 1336
Author(s):  
Rakesh Roy ◽  
Ren-In You ◽  
Chan-Hua Chang ◽  
Chiou-Ying Yang ◽  
Nien-Tsung Lin

Carboxy-terminal processing protease (Ctp) is a serine protease that controls multiple cellular processes through posttranslational modification of proteins. Acinetobacter baumannii ATCC 17978 ctp mutant, namely MR14, is known to cause cell wall defects and autolysis. The objective of this study was to investigate the role of ctp mutation–driven autolysis in regulating biofilms in A. baumannii and to evaluate the vesiculation caused by cell wall defects. We found that in A. baumannii, Ctp is localized in the cytoplasmic membrane, and loss of Ctp function enhances the biofilm-forming ability of A. baumannii. Quantification of the matrix components revealed that extracellular DNA (eDNA) and proteins were the chief constituents of MR14 biofilm, and the transmission electron microscopy further indicated the presence of numerous dead cells compared with ATCC 17978. The large number of MR14 dead cells is potentially the result of compromised outer membrane integrity, as demonstrated by its high sensitivity to sodium dodecyl sulfate (SDS) and ethylenediaminetetraacetic acid (EDTA). MR14 also exhibited the hypervesiculation phenotype, producing outer-membrane vesicles (OMVs) of large mean size. The MR14 OMVs were more cytotoxic toward A549 cells than ATCC 17978 OMVs. Our overall results indicate that A. baumanniictp negatively controls pathogenic traits through autolysis and OMV biogenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yafei Shi ◽  
Yufen Che ◽  
Yukun Wang ◽  
Sheng Luan ◽  
Xin Hou

Abstract Background Photosystem II (PSII) is a highly conserved integral-membrane multi-subunit pigment-protein complex. The proteins, pigments, lipids, and ions in PSII need to be assembled precisely to ensure a proper PSII biogenesis. D1 is the main subunit of PSII core reaction center (RC), and is usually synthesized as a precursor D1. D1 maturation by the C-terminal processing protease CtpA is essential for PSII assembly. However, the detailed mechanism about how D1 maturation affects PSII assembly is not clearly elucidated so far. In this study, Arabidopsis thaliana CtpA mutant (atctpa: SALK_056011), which lacks the D1 mature process, was used to investigate the function of this process on PSII assembly in more details. Results Without the C-terminal processing of precursor D1, PSII assembly, including PSII monomer, dimer, especially PSII supercomplexes (PSII SCs), was largely compromised as reported previously. Western blotting following the BN-2D-SDS PAGE revealed that although the assembly of PSII core proteins D2, CP43 and CP47 was affected by the loss of D1 mature process, the incorporation of CP43 was affected the most, indicated by its most reduced assembly efficiency into PSII SCs. Furthermore, the slower growth of yeast cells which were co-transformed with pD1 and CP43, when compared with the ones co-transformed with mature D1 and CP43, approved the existence of D1 C-terminal tail hindered the interaction efficiency between D1 and CP43, indicating the physiological importance of D1 mature process on the PSII assembly and the healthy growth of the organisms. Conclusions The knockout Arabidopsis atctpa mutant is a good material to study the unexpected link between D1 maturation and PSII SCs assembly. The loss of D1 maturation mainly affects the incorporation of PSII core protein CP43, an inner antenna binding protein, which functions in the association of LHCII complexes to PSII dimers during the formation of PSII SCs. Our findings here provide detailed supports of the role of D1 maturation during PSII SCs assembly in higher plants.


2021 ◽  
Author(s):  
Doraid T. Sadideen ◽  
Baowei Chen ◽  
Manal Basili ◽  
Montaser Shaheen

AbstractDNA double strand breaks (DSBs) are repair by homology-based repair or non-homologous end joining and multiple sub-pathways exist. 53BP1 is a key DNA double strand break repair protein that regulates repair pathway choice. It is key for joining DSBs during immunoglobulin heavy chain class switch recombination. Here we identify USP47 as a deubiquitylase that associates with and regulates 53BP1 function. USP47 loss results in 53BP1 instability in proteasome dependent manner, and defective 53BP1 ionizing radiation induced foci (IRIF). USP47 catalytic activity is required for maintaining 53BP1 protein level. Similar to 53BP1, USP47 depletion results in sensitivity to DNA DSB inducing agents and defective immunoglobulin CSR. Our findings establish a function for USP47 in DNA DSB repair at least partially through 53BP1.


Author(s):  
Yongqiang Zhao ◽  
Xiaoyong Li ◽  
Geng Tian ◽  
Xinyan Zhao ◽  
Jiemin Wong ◽  
...  

Abstract Ubiquitin-specific-processing protease 7 (Usp7) is a key deubiquitinase controlling epigenetic modification and regulating the self-renewal, proliferation, and differentiation of stem cells. However, the functions and mechanisms of action of Usp7 on female germline stem cells (FGSCs) are unknown. Here, we demonstrated that Usp7 regulated FGSC self-renewal via DNA methylation. The results of Cell Counting Kit-8 and 5-ethynyl-20-deoxyuridine assays showed that the viability and proliferation of FGSCs were negatively regulated by Usp7. Moreover, Usp7 downregulated the expression of self-renewal genes, such as Oct4, Etv5, Foxo1, and Akt, but upregulated the expression of differentiation-related genes including Stra8 and Sycp3. Mechanistically, RNA-seq results showed that Usp7 negatively regulated FGSC self-renewal but positively modulated differentiation in FGSCs. Meanwhile, both overexpression and knockdown of Usp7 resulted in significant changes in DNA methylation and histone modification in FGSCs. Additionally, RNA-seq and MeDIP-seq analyses showed that Usp7 regulates the self-renewal and differentiation of FGSCs mainly through DNA methylation rather than histone modification, which was also confirmed by a rescue assay. Our study not only offers a novel method to research FGSC self-renewal and differentiation in view of epigenetic modifications, but also provides a deep understanding of FGSC development.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Marta Wojnowska ◽  
Daniel Walker

ABSTRACT Phytopathogenic Pectobacterium spp. import ferredoxin into the periplasm for proteolytic processing and iron release via the ferredoxin uptake system. Although the ferredoxin receptor FusA and the processing protease FusC have been identified, the mechanistic basis of ferredoxin import is poorly understood. In this work, we demonstrate that protein translocation across the outer membrane is dependent on the TonB-like protein FusB. In contrast to the loss of FusC, loss of FusB or FusA abolishes ferredoxin transport to the periplasm, demonstrating that FusA and FusB work in concert to transport ferredoxin across the outer membrane. In addition to an interaction with the “TonB box” region of FusA, FusB also forms a complex with the ferredoxin substrate, with complex formation required for substrate transport. These data suggest that ferredoxin transport requires energy transduction from the cytoplasmic membrane via FusB both for removal of the FusA plug domain and for substrate translocation through the FusA barrel. IMPORTANCE The ability to acquire iron is key to the ability of bacteria to cause infection. Plant-pathogenic Pectobacterium spp. are able to acquire iron from plants by transporting the iron-containing protein ferredoxin into the cell from proteolytic processing. In this work, we show that the TonB-like protein FusB plays a key role in transporting ferredoxin across the bacterial outer membrane by directly energizing its transport into the cell. The direct interaction of the TonB-like protein with substrate is unprecedented and explains the requirement for the system-specific TonB homologue in the ferredoxin uptake system. Since multiple genes encoding TonB-like proteins are commonly found in the genomes of Gram-negative bacteria, this may be a common mechanism for the uptake of atypical substrates via TonB-dependent receptors.


Sign in / Sign up

Export Citation Format

Share Document