Single Breath Diffusion Capacity for Carbon Monoxide in Bronchial Asthma and Emphysema1

Author(s):  
H. Magnussen
2020 ◽  
pp. 15-23
Author(s):  
G. V. Nekludova ◽  
A. V. Chernyak

The article provides an overview of the technical capabilities and updated standards for the study of diffusion capacity of the lungs using diagnostic systems using rapidly responding gas analyzers (RGA analyzers — rapidly responding gas analyzers) of carbon monoxide and indicator gas, presented by a joint working group of the European Respiratory Society (ERC) and the American Thoracic Society (ATS).


CHEST Journal ◽  
2004 ◽  
Vol 125 (3) ◽  
pp. 1019-1027 ◽  
Author(s):  
Gerald S. Zavorsky ◽  
Karine Badra Quiron ◽  
Philip S. Massarelli ◽  
Larry C. Lands

2008 ◽  
Vol 104 (4) ◽  
pp. 1094-1100 ◽  
Author(s):  
Sylvia Verbanck ◽  
Daniel Schuermans ◽  
Sophie Van Malderen ◽  
Walter Vincken ◽  
Bruce Thompson

It has long been assumed that the ventilation heterogeneity associated with lung disease could, in itself, affect the measurement of carbon monoxide transfer factor. The aim of this study was to investigate the potential estimation errors of carbon monoxide diffusing capacity (DlCO) measurement that are specifically due to conductive ventilation heterogeneity, i.e., due to a combination of ventilation heterogeneity and flow asynchrony between lung units larger than acini. We induced conductive airway ventilation heterogeneity in 35 never-smoker normal subjects by histamine provocation and related the resulting changes in conductive ventilation heterogeneity (derived from the multiple-breath washout test) to corresponding changes in diffusing capacity, alveolar volume, and inspired vital capacity (derived from the single-breath DlCO method). Average conductive ventilation heterogeneity doubled ( P < 0.001), whereas DlCO decreased by 6% ( P < 0.001), with no correlation between individual data ( P > 0.1). Average inspired vital capacity and alveolar volume both decreased significantly by, respectively, 6 and 3%, and the individual changes in alveolar volume and in conductive ventilation heterogeneity were correlated ( r = −0.46; P = 0.006). These findings can be brought in agreement with recent modeling work, where specific ventilation heterogeneity resulting from different distributions of either inspired volume or end-expiratory lung volume have been shown to affect DlCO estimation errors in opposite ways. Even in the presence of flow asynchrony, these errors appear to largely cancel out in our experimental situation of histamine-induced conductive ventilation heterogeneity. Finally, we also predicted which alternative combination of specific ventilation heterogeneity and flow asynchrony could affect DlCO estimate in a more substantial fashion in diseased lungs, irrespective of any diffusion-dependent effects.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Courtney M. Wheatley ◽  
Nicholas A. Cassuto ◽  
William T. Foxx‐Lupo ◽  
Eric C. Wong ◽  
Nicholas A. Delamere ◽  
...  

1988 ◽  
Vol 137 (5) ◽  
pp. 1244-1244
Author(s):  
Edith Rosenberg ◽  
Margaret R. Becklake

Sign in / Sign up

Export Citation Format

Share Document