Volume Correction For Diffusion Capacity: Use Of Total Lung Capacity By Either Nitrogen Washout Or Body Plethymography Instead Of Alveolar Volume By Single Breath Methane Dilution

Author(s):  
Anthony O. Uvieghara ◽  
Jesus Lanza ◽  
Viswanath P. Vasudevan ◽  
Farhand Arjomand
Respirology ◽  
2007 ◽  
Vol 12 (2) ◽  
pp. 291-294 ◽  
Author(s):  
Gene R. PESOLA ◽  
Robert T. MAGARI ◽  
Samuel DARTEY-HAYFORD ◽  
Vinette COELHO-D'COSTA ◽  
Vernon M. CHINCHILLI

CHEST Journal ◽  
2003 ◽  
Vol 124 (4) ◽  
pp. 123S
Author(s):  
Gene R. Pesola ◽  
Robert T. Magari ◽  
Samuel Dartey ◽  
Vinette Coelho-D'Costa ◽  
Gladstone Huggins

PEDIATRICS ◽  
1980 ◽  
Vol 65 (5) ◽  
pp. 1013-1017
Author(s):  
Thomas G. Keens ◽  
Margaret H. O'Neal ◽  
Jorge A. Ortega ◽  
Carol B. Hyman ◽  
Arnold C.G. Platzker

Pulmonary function tests were performed in 12 thalassemia patients on a hypertransfusion program (age 18.4 ± 2.6 SEM years) to determine the presence of any abnormalities of lung function. These included spirometry, expiratory flow rates, body plethysmography, single-breath nitrogen washout, single breath carbon monoxide diffusing capacity, and arterial blood gases. Only one patient had normal pulmonary function. Arterial hypoxemia was present in ten of 12 patients at rest. The total lung capacity (TLC) was normal. The residual volume was abnormally increased in five of 12 patients. The slope of phase III of single breath nitrogen washout curve was abnormal in five of 12 patients, but the closing volume was normal. The maximal expiratory flow rate at 60% total lung capacity was decreased in four of 12 patients, suggesting the presence of small airway disease. The single breath carbon monoxide diffusing capacity was normal in all patients. These pulmonary function abnormalities did not correlate with age or the cumulative amount of iron via blood transfused. The small airway obstruction, hyperinflation; and hypoxemia observed in thalassemia patients on a hypertransfusion program may result from the basic disease, iron deposition in the lungs, or other factors.


Respiration ◽  
2021 ◽  
pp. 1-7
Author(s):  
Roberta Pisi ◽  
Marina Aiello ◽  
Luigino Calzetta ◽  
Annalisa Frizzelli ◽  
Veronica Alfieri ◽  
...  

<b><i>Background:</i></b> The ventilation heterogeneity (VH) is reliably assessed by the multiple-breath nitrogen washout (MBNW), which provides indices of conductive (<i>S</i><sub>cond</sub>) and acinar (<i>S</i><sub>acin</sub>) VH as well as the lung clearance index (LCI), an index of global VH. VH can be alternatively measured by the poorly communicating fraction (PCF), that is, the ratio of total lung capacity by body plethysmography to alveolar volume from the single-breath lung diffusing capacity measurement. <b><i>Objectives:</i></b> Our objective was to assess VH by PCF and MBNW in patients with asthma and with COPD and to compare PCF and MBNW parameters in both patient groups. <b><i>Method:</i></b> We studied 35 asthmatic patients and 45 patients with COPD. Each patient performed spirometry, body plethysmography, diffusing capacity, and MBNW test. <b><i>Results:</i></b> Compared to COPD patients, asthmatics showed a significantly lesser degree of airflow obstruction and lung hyperinflation. In asthmatic patients, both PCF and LCI and <i>S</i><sub>acin</sub> values were significantly lower than the corresponding ones of COPD patients. In addition, in both patient groups, PCF showed a positive correlation with LCI (<i>p</i> &#x3c; 0.05) and <i>S</i><sub>acin</sub> (<i>p</i> &#x3c; 0.05), but not with <i>S</i><sub>cond</sub>. Lastly, COPD patients with PCF &#x3e;30% were highly likely to have a value ≥2 of the mMRC dyspnea scale. <b><i>Conclusions:</i></b> These results showed that PCF, a readily measure derived from routine pulmonary function testing, can provide a comprehensive measure of both global and acinar VH in asthma and in COPD patients and can be considered as a comparable tool to the well-established MBNW technique.


1980 ◽  
Vol 49 (6) ◽  
pp. 946-952 ◽  
Author(s):  
C. A. Bradley ◽  
N. R. Anthonisen

The effects of a variety of restrictive procedures on lung mechanics were studied in eight healthy subjects. Rib cage restriction decreased total lung capacity (TLC) by 43% and significantly increased elastic recoil and maximum expiratory flow (MEF). Subsequent immersion of four subjects with rib cage restriction resulted in no further change in either parameter; shifts of blood volume did not reverse recoil changes during rib cage restriction. Abdominal restriction decreased TLC by 40% and increased MEF and elastic recoil, but recoil was increased significantly less than was the case with rib cage restriction. Further, at a given recoil pressure, MEF was less during rib cage restriction than during either abdominal restriction or no restriction. Measurements of the unevenness of inspired gas distribution by the single-breath nitrogen technique showed increased unevenness during rib cage restriction, which was significantly greater than that during abdominal restriction. We conclude that lung volume restriction induces changes in lung function, but the nature of these changes depends on how the restriction is applied and therefore cannot be ascribed to low lung volume breathing per se.


1984 ◽  
Vol 56 (1) ◽  
pp. 52-56 ◽  
Author(s):  
T. S. Hurst ◽  
B. L. Graham ◽  
D. J. Cotton

We studied 10 symptom-free lifetime non-smokers and 17 smokers all with normal pulmonary function studies. All subjects performed single-breath N2 washout tests by either exhaling slowly (“slow maneuver”) from end inspiration (EI) to residual volume (RV) or exhaling maximally (“fast maneuver”) from EI to RV. After either maneuver, subjects then slowly inhaled 100% O2 to total lung capacity (TLC) and without breath holding, exhaled slowly back to RV. In the nonsmokers seated upright phase III slope of single-breath N2 test (delta N2/l) was lower (P less than 0.01) for the fast vs. the slow maneuver, but this difference disappeared when the subjects repeated the maneuvers in the supine position. In contrast, delta N2/l was higher for the fast vs. the slow maneuver (P less than 0.01) in smokers seated upright. For the slow maneuver, delta N2/l was similar between smokers and nonsmokers but for the fast maneuvers delta N2/l was higher in smokers than nonsmokers (P less than 0.01). We suggest that the fast exhalation to RV decreases delta N2/l in normal subjects by decreasing apex-to-base differences in regional ratio of RV to TLC (RV/TLC) but increases delta N2/l in smokers, because regional RV/TLC increases distal to sites of small airways obstruction when the expiratory flow rate is increased.


Respirology ◽  
2014 ◽  
Vol 19 (7) ◽  
pp. 1046-1051 ◽  
Author(s):  
David A. Kaminsky ◽  
Anees Daud ◽  
David G. Chapman

Sign in / Sign up

Export Citation Format

Share Document