scholarly journals Triggering of Suicidal Erythrocyte Death by Ruxolitinib

2015 ◽  
Vol 37 (2) ◽  
pp. 768-778 ◽  
Author(s):  
Marilena Briglia ◽  
Antonella Fazio ◽  
Caterina Faggio ◽  
Stefan Laufer ◽  
Kousi Alzoubi ◽  
...  

Background/Aims: The JAK1/JAK2 tyrosine kinase inhibitor ruxolitinib is widely used for the treatment of myeloproliferative neoplasm-associated myelofibrosis and other malignancies. Most important side effects include anemia. A common cause of anemia is accelerated suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Mechanisms contributing to the triggering of eryptosis include oxidative stress, Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i), and activation of distinct kinases, such as p38 mitogen activated protein (MAP) kinase. The present study explored whether and how ruxolitinib induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and ROS formation from DCFDA dependent fluorescence. Results: A 48 hours exposure of human erythrocytes to ruxolitinib (25 µM) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. Ruxolitinib did not significantly modify Fluo3-fluorescence and DCFDA fluorescence and the effect of ruxolitinib on annexin-V-binding was not significantly modified by removal of extracellular Ca2+. The effect of ruxolitinib on annexin-V-binding was, however, significantly blunted by the p38 MAP kinase inhibitor SB203580 and virtually abolished by the p38 MAP kinase inhibitor skepinone. Conclusion: Ruxolitinib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part requiring p38 MAP kinase activity.

2016 ◽  
Vol 38 (3) ◽  
pp. 1111-1120 ◽  
Author(s):  
Rosi Bissinger ◽  
Abdulla Al Mamun Bhuyan ◽  
Elena Signoretto ◽  
Florian Lang

Background/Aims: The antiviral drug Elvitegravir is used for the treatment of Human Immunodeficiency Virus (HIV) infections. The present study explored whether the drug is able to trigger eryptosis, the suicidal death of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, activated p38 kinase and activated caspases. The present study explored, whether Elvitegravir induces eryptosis and, if so, to shed light on the mechanisms involved. Methods: Phosphatidylserine abundance at the erythrocyte surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Elvitegravir (≥ 1.5 µg/ml) significantly increased the percentage of annexin-V-binding cells, and significantly decreased forward scatter. Elvitegravir (2.5 µg/ml) significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of Elvitegravir on annexin-V-binding was significantly blunted by removal of extracellular Ca2+, but not in the presence of p38 kinase inhibitor SB203580 (2 µM) or in the presence of pancaspase inhibitor zVAD (10 µM). Conclusions: Elvitegravir triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+.


2015 ◽  
Vol 37 (6) ◽  
pp. 2275-2287 ◽  
Author(s):  
Jens Zierle ◽  
Rosi Bissinger ◽  
Jasmin Egler ◽  
Florian Lang

Background/Aims: The human epidermal growth factor receptors tyrosine kinase inhibitor lapatinib has been shown to trigger suicidal death or apoptosis of tumor cells and is thus used for the treatment of malignancy. Side effects of lapatinib include anemia, which could, at least in theory, result from stimulation of eryptosis, the suicidal death of erythrocytes which is characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine translocation to the erythrocyte surface. Mechanisms involved in the triggering of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether lapatinib induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence, and ceramide abundance utilizing labelled specific antibodies. Results: A 48 hours exposure of human erythrocytes to lapatinib (≥ 1 µg/ml) significantly increased the percentage of annexin-V-binding cells, and significantly decreased forward scatter. Lapatinib (7.5 µg/ml) did not significantly modify DCFDA fluorescence and ceramide abundance. Lapatinib slightly, but significantly decreased Fluo3-fluorescence (≥ 5 µg/ml). Lapatinib (7.5 µg/ml) enhanced the annexin-V-binding in the presence of the Ca2+ ionophore ionomycin (1 µM) without significantly modifying Fluo3 fluorescence in the presence of ionomycin. The effect of lapatinib on forward scatter but not on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Conclusion: Lapatinib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect occurring despite decrease of cytosolic Ca2+ activity.


2016 ◽  
Vol 39 (3) ◽  
pp. 939-949 ◽  
Author(s):  
Thomas Peter ◽  
Rosi Bissinger ◽  
Florian Lang

Background/Aims: The echinocandin antifungal agent caspofungin has been shown to trigger apoptosis of fungal cells. Beyond that, caspofungin is toxic for host mitochondria. Even though lacking mitochondria, erythrocytes may enter apoptosis-like suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, caspase activation and/or activation of p38 kinase, protein kinase C, and casein kinase. The present study explored, whether caspofungin induces eryptosis and, if so, to shed some light on the cellular mechanisms involved. Methods: Flow cytometry was employed to determine phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to caspofungin (≥ 30 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly enhanced hemolysis, but did not significantly increase Fluo3-fluorescence, DCFDA fluorescence or ceramide abundance. The effect of caspofungin on annexin-V-binding was not significantly blunted by removal of extracellular Ca2+, by inhibition of caspases with pancaspase inhibitor zVAD (10 µM), or by addition of the antioxidant N-acetyl-cysteine (1 mM), p38 kinase inhibitor SB203580 (2 µM) or protein kinase C inhibitor staurosporine (1 µM). The effect of caspofungin on annexin-V-binding was, however, significantly blunted in the presence of casein kinase inhibitor D4476 (10 µM). Conclusions: Caspofungin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect possibly involving activation of casein kinase.


2015 ◽  
Vol 37 (6) ◽  
pp. 2464-2475 ◽  
Author(s):  
Marilena Briglia ◽  
Salvatrice Calabró ◽  
Elena Signoretto ◽  
Kousi Alzoubi ◽  
Stefan Laufer ◽  
...  

Background/Aims: Fucoxanthin, a carotenoid isolated from brown seaweeds, induces suicidal death or apoptosis of tumor cells and is thus considered for the treatment or prevention of malignancy. In analogy to apoptosis of nucleated cell, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and activation of p38 kinase or protein kinase C. The present study explored, whether and how fucoxanthin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence and lipid peroxidation using BODIPY fluoresence. Results: A 48 hours exposure of human erythrocytes to fucoxanthin significantly increased the percentage of annexin-V-binding cells (≥ 50 µM), significantly decreased average forward scatter (≥ 25 µM), significantly increased hemolysis (≥ 25 µM), significantly increased Fluo3-fluorescence (≥ 50 µM), significantly increased lipid peroxidation, but did not significantly modify DCFDA fluorescence. The effect of fucoxanthin on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+, and was insensitive to p38 kinase inhibitor skepinone (2 µM) and to protein kinase C inhibitor calphostin (100 nM). Conclusion: Fucoxanthin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry.


2015 ◽  
Vol 37 (6) ◽  
pp. 2393-2404 ◽  
Author(s):  
Antonella Fazio ◽  
Marilena Briglia ◽  
Caterina Faggio ◽  
Kousi Alzoubi ◽  
Florian Lang

Background/Aims: The alkylating drug oxaliplatin is widely used for chemotherapy of malignancy. Oxaliplatin is effective by inducing both, necrosis and apoptosis. Similar to necrosis or apoptosis of nucleated cells, erythrocytes may enter hemolysis, which is apparent from hemoglobin release or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress and/or Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored, whether and how oxaliplatin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was quantified utilizing annexin-V-binding, cell volume estimated from forward scatter, hemolysis deduced from hemoglobin release, [Ca2+]i determined utilizing Fluo-3 fluorescence, and reactive oxygen species (ROS) abundance visualized using 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence. Results: A 48 hours exposure of human erythrocytes to oxaliplatin (10 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo-3 fluorescence, and significantly increased DCFDA fluorescence. The effect of oxaliplatin on annexin-V-binding and forward scatter was rather augmented by removal of extracellular Ca2+, but was significantly blunted in the presence of the antioxidant N-acetyl-cysteine (1 mM). Conclusions: Oxaliplatin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect partially dependent on ROS formation.


2016 ◽  
Vol 38 (3) ◽  
pp. 969-981 ◽  
Author(s):  
Elena Signoretto ◽  
Rosi Bissinger ◽  
Michela Castagna ◽  
Florian Lang

Background/Aims: Combretastatin A4 phosphate disodium (CA4P) is utilized for the treatment of malignancy. The substance has previously been shown to trigger suicidal cell death or apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), ceramide, oxidative stress and ATP depletion. The present study explored, whether CA4P induces eryptosis and, if so, to gain insight into mechanisms involved. Methods: Flow cytometry has been employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCF fluorescence, glutathione (GSH) abundance from CMF fluorescence and ceramide abundance from fluorescent antibodies. In addition cytosolic ATP levels were quantified utilizing a luciferin-luciferase-based assay and hemolysis was estimated from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to CA4P (≥ 50 µM) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. CA4P did not appreciably increase hemolysis. Hundred µM CA4P significantly increased Fluo3-fluorescence. The effect of CA4P (100 µM) on annexin-V-binding was significantly blunted, but not abolished, by removal of extracellular Ca2+. CA4P (≥ 50 µM) significantly decreased GSH abundance and ATP levels but did not significantly increase ROS or ceramide. Conclusions: CA4P triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to entry of extracellular Ca2+ and energy depletion.


2018 ◽  
Vol 50 (6) ◽  
pp. 2283-2295 ◽  
Author(s):  
Madeline Fink ◽  
Abdulla Al Mamun Bhuyan ◽  
Nefeli Zacharopoulou ◽  
Florian Lang

Background/Aims: The sesquiterpene lactone Costunolide is effective against various disorders including inflammation and malignancy. The substance is effective in part by triggering suicidal death or apoptosis of tumor cells. Mechanisms involved include altered function of transcription factors and mitochondria. Erythrocytes lack nuclei and mitochondria but are – in analogy to apoptosis of nucleated cells – able to enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether Costunolide induces eryptosis and, if so, to shed light on the mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) formation from 2’,7’-dichlorodihydrofluorescein (DCF)-dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Costunolide (15 µg/ml) significantly enhanced the percentage of annexin-V-binding cells, significantly decreased forward scatter and significantly increased Fluo3-fluorescence, DCF-fluorescence, and ceramide abundance. The effect of Costunolide on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Conclusion: Costunolide triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry and paralleled by oxidative stress and ceramide formation.


2015 ◽  
Vol 37 (6) ◽  
pp. 2221-2230 ◽  
Author(s):  
Marilena Briglia ◽  
Antonella Fazio ◽  
Elena Signoretto ◽  
Caterina Faggio ◽  
Florian Lang

Background/Aims: The anti-inflammatory, anti-autoimmune, antiparasitic, and anti-viral ether phospholipid edelfosine (1-O-octadecyl-2-O-methylglycero-3-phosphocholine) stimulates apoptosis of tumor cells and is thus considered for the treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phospholipid scrambling of the cell membrane with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i) and oxidative stress. The present study explored, whether and how edelfosine induces eryptosis. Methods: Flow cytometry and photometry, respectively, were employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Results: A 6 hours exposure of human erythrocytes to edelfosine (5 µM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, and significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence. The effect of edelfosine on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Edelfosine triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry.


2015 ◽  
Vol 37 (6) ◽  
pp. 2486-2495 ◽  
Author(s):  
Rosi Bissinger ◽  
Sabrina Waibel ◽  
Ghada Bouguerra ◽  
Abdulla Al Mamun Bhuyan ◽  
Salem Abbès ◽  
...  

Background/Aims: The protease inhibitor lopinavir, used for the treatment of HIV infections, triggers suicidal death or apoptosis of nucleated cells. Side effects of lopinavir include anemia, which could in theory result from stimulation of suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and by phospholipid scrambling of the cell membrane leading to phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether lopinavir induces eryptosis. Methods: Flow cytometry was employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, reduced glutathione (GSH) from mercury orange fluorescence and ceramide abundance utilizing labelled specific antibodies. Hemolysis was estimated from haemoglobin concentration of the supernatant. Results: A 48 hours exposure of human erythrocytes to lopinavir significantly increased the percentage of annexin-V-binding cells (≥ 10 µg/ml), significantly decreased forward scatter (≥15 µg/ml), significantly increased hemolysis (≥ 15 µg/ml), significantly increased Fluo3-fluorescence (20 µg/ml), and significantly increased DCFDA fluorescence (20 µg/ml) but did not significantly modify ceramide abundance. The effect of lopinavir on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusion: Lopinavir treatment of erythrocytes from healthy volunteers is followed by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation and Ca2+ entry.


2015 ◽  
Vol 37 (4) ◽  
pp. 1607-1618 ◽  
Author(s):  
Rosi Bissinger ◽  
Ghada Bouguerra ◽  
Katja Stockinger ◽  
Salem Abbès ◽  
Florian Lang

Background/Aims: The topoisomerase I inhibitor topotecan is used as treatment of various malignancies. The substance is effective by triggering tumor cell apoptosis. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the outer face of the erythrocyte membrane. Signaling leading to eryptosis include Ca2+-entry and ceramide formation. The present study explored, whether and how topotecan induces eryptosis. Methods: Phosphatidylserine abundance at the erythrocyte surface was estimated from annexin V binding, cell volume from forward scatter, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to topotecan significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. The effect of topotecan was paralleled by a significant increase of ceramide abundance. The effect of topotecan on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Topotecan stimulated cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled by increase of ceramide abundance and partially dependent on entry of extracellular Ca2+.


Sign in / Sign up

Export Citation Format

Share Document