scholarly journals Stimulation of Erythrocyte Cell Membrane Scrambling by C-Reactive Protein

2017 ◽  
Vol 41 (2) ◽  
pp. 806-818 ◽  
Author(s):  
Majed Abed ◽  
Christian Thiel ◽  
Syeda T. Towhid ◽  
Kousi Alzoubi ◽  
Sabina Honisch ◽  
...  

Background: Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine-translocation, is triggered by fever and inflammation. Signaling includes increased cytosolic Ca2+-activity ([Ca2+]i), caspase activation, and ceramide. Inflammation is associated with increased plasma concentration of C-reactive protein (CRP). The present study explored whether CRP triggers eryptosis. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide abundance and caspase-3-activity utilizing FITC-conjugated antibodies. Moreover, blood was drawn from patients with acute appendicitis (9♀,11♂) and healthy volunteers (10♀,10♂) for determination of CRP, blood count and phosphatidylserine. Results: A 48h CRP treatment significantly increased the percentage of annexin-V-binding cells (≥5µg/ml), [Ca2+]i (≥5µg/ml), ceramide (20µg/ml) and caspase-activity (20µg/ml). Annexin-V-binding was significantly blunted by caspase inhibitor zVAD (10µM). The percentage of phosphatidylserine-exposing erythrocytes in freshly drawn blood was significantly higher in appendicitis patients (1.83±0.21%) than healthy volunteers (0.81±0.09%), and significantly higher following a 24h incubation of erythrocytes from healthy volunteers to patient plasma than to plasma from healthy volunteers. The percentage of phosphatidylserine-exposing erythrocytes correlated with CRP plasma concentration. Conclusion: C-reactive protein triggers eryptosis, an effect at least partially due to increase of [Ca2+]i, increase of ceramide abundance and caspase activation.

2015 ◽  
Vol 36 (4) ◽  
pp. 1395-1405 ◽  
Author(s):  
Rosi Bissinger ◽  
Susanne Barking ◽  
Kousi Alzoubi ◽  
Guilai Liu ◽  
Guoxing Liu ◽  
...  

Background: The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i), and ceramide. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS) from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from specific antibody binding. Results: A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 µg/ml), significantly decreased forward scatter (≥5 µg/ml), significantly increased ROS abundance (5 µg/ml), significantly increased [Ca2+]i (7.5 µg/ml) and significantly increased ceramide abundance (10 µg/ml). The up-regulation of annexin-V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Conclusions: Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 597-607 ◽  
Author(s):  
Mohamed Jemaà ◽  
Morena Mischitelli ◽  
Myriam Fezai ◽  
Mustafa Almasry ◽  
Caterina Faggio ◽  
...  

Background/Aims: The CDC25B inhibitor NSC-95397 triggers apoptosis of tumor cells and is thus considered for the treatment of malignancy. The substance is effective in part by modification of gene expression. Similar to apoptosis of nucleated cells erythrocytes may undergo eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, as well as activation of protein kinases. The present study explored, whether NSC-95397 induces eryptosis and, if so, to shed some light on the mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to NSC-95397 significantly increased the percentage of annexin-V-binding cells (≥ 1 µM), significantly decreased forward scatter (≥ 2.5 µM), and significantly increased Fluo3-fluorescence (≥ 1 µM), DCFDA fluorescence (5 µM) and ceramide abundance (≥ 5 µM). The effect of NSC-95397 (5 µM) on annexin-V-binding was slightly, but significantly blunted by removal of extracellular Ca2+ and by addition of the protein kinase C inhibitor staurosporine (1 µM). Conclusions: NSC-95397 triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part requiring entry of Ca2+ and activation of staurosporine sensitive kinase(s).


2015 ◽  
Vol 37 (6) ◽  
pp. 2393-2404 ◽  
Author(s):  
Antonella Fazio ◽  
Marilena Briglia ◽  
Caterina Faggio ◽  
Kousi Alzoubi ◽  
Florian Lang

Background/Aims: The alkylating drug oxaliplatin is widely used for chemotherapy of malignancy. Oxaliplatin is effective by inducing both, necrosis and apoptosis. Similar to necrosis or apoptosis of nucleated cells, erythrocytes may enter hemolysis, which is apparent from hemoglobin release or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress and/or Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored, whether and how oxaliplatin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was quantified utilizing annexin-V-binding, cell volume estimated from forward scatter, hemolysis deduced from hemoglobin release, [Ca2+]i determined utilizing Fluo-3 fluorescence, and reactive oxygen species (ROS) abundance visualized using 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence. Results: A 48 hours exposure of human erythrocytes to oxaliplatin (10 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo-3 fluorescence, and significantly increased DCFDA fluorescence. The effect of oxaliplatin on annexin-V-binding and forward scatter was rather augmented by removal of extracellular Ca2+, but was significantly blunted in the presence of the antioxidant N-acetyl-cysteine (1 mM). Conclusions: Oxaliplatin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect partially dependent on ROS formation.


2018 ◽  
Vol 50 (6) ◽  
pp. 2283-2295 ◽  
Author(s):  
Madeline Fink ◽  
Abdulla Al Mamun Bhuyan ◽  
Nefeli Zacharopoulou ◽  
Florian Lang

Background/Aims: The sesquiterpene lactone Costunolide is effective against various disorders including inflammation and malignancy. The substance is effective in part by triggering suicidal death or apoptosis of tumor cells. Mechanisms involved include altered function of transcription factors and mitochondria. Erythrocytes lack nuclei and mitochondria but are – in analogy to apoptosis of nucleated cells – able to enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether Costunolide induces eryptosis and, if so, to shed light on the mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) formation from 2’,7’-dichlorodihydrofluorescein (DCF)-dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Costunolide (15 µg/ml) significantly enhanced the percentage of annexin-V-binding cells, significantly decreased forward scatter and significantly increased Fluo3-fluorescence, DCF-fluorescence, and ceramide abundance. The effect of Costunolide on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Conclusion: Costunolide triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry and paralleled by oxidative stress and ceramide formation.


2015 ◽  
Vol 37 (6) ◽  
pp. 2221-2230 ◽  
Author(s):  
Marilena Briglia ◽  
Antonella Fazio ◽  
Elena Signoretto ◽  
Caterina Faggio ◽  
Florian Lang

Background/Aims: The anti-inflammatory, anti-autoimmune, antiparasitic, and anti-viral ether phospholipid edelfosine (1-O-octadecyl-2-O-methylglycero-3-phosphocholine) stimulates apoptosis of tumor cells and is thus considered for the treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phospholipid scrambling of the cell membrane with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i) and oxidative stress. The present study explored, whether and how edelfosine induces eryptosis. Methods: Flow cytometry and photometry, respectively, were employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Results: A 6 hours exposure of human erythrocytes to edelfosine (5 µM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, and significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence. The effect of edelfosine on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Edelfosine triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry.


2016 ◽  
Vol 40 (1-2) ◽  
pp. 163-171 ◽  
Author(s):  
Mustafa Almasry ◽  
Mohamed Jemaà ◽  
Morena Mischitelli ◽  
Caterina Faggio ◽  
Florian Lang

Background/Aims: The serine/threonine protein phosphatase 1 and 2a inhibitor Calyculin A may trigger suicidal death or apoptosis of tumor cells. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+] i). Eryptosis is fostered by activation of staurosporine sensitive protein kinase C, SB203580 sensitive p38 kinase, and D4476 sensitive casein kinase. Eryptosis may further involve zVAD sensitive caspases. The present study explored, whether Calyculin A induces eryptosis and, if so, whether its effect requires Ca2+ entry, kinases and/or caspases Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, and [Ca2+] i from Fluo-3 fluorescence, as determined by flow cytometry. Results: A 48 hours exposure of human erythrocytes to Calyculin A (≥ 2.5 nM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter and significantly increased Fluo-3 fluorescence. The effect of Calyculin A on annexin-V-binding was significantly blunted by removal of extracellular Ca2+, by staurosorine (1 µM), SB203580 (2 µM), D4476 (10 µM), and zVAD (10 µM). Conclusions: Calyculin A triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part requiring Ca2+ entry, kinase activity and caspase activation.


2017 ◽  
Vol 41 (6) ◽  
pp. 2534-2544 ◽  
Author(s):  
Jasmin Egler ◽  
Florian Lang

Background/Aims: The alkylphospholipid perifosine is used for the treatment of malignancy. The substance is effective by triggering suicidal tumor cell death or apoptosis. Side effects of perifosine include anemia. At least in theory, perifosine-induced anemia could result from stimulation of suicidal erythrocyte death or eryptosis. Hallmarks of eryptosis are cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms participating in the orchestration of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, increase of ceramide abundance, as well as activation of staurosporine sensitive protein kinase C and/or of SB203580 sensitive p38 kinase. The present study explored, whether perifosine induces eryptosis and, if so, whether its effect involves and/or requires Ca2+ entry, oxidative stress, ceramide and kinase activation. Methods: Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. Results: A 24 hours exposure of human erythrocytes to perifosine (2.5 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased average forward scatter, significantly increased the percentage of shrunken erythrocytes, and significantly decreased the percentage of swollen erythrocytes. Perifosine significantly increased the percentage of hemolytic erythrocytes. Perifosine significantly increased Fluo3-fluorescence, but decreased DCFDA fluorescence and ceramide abundance. The effect of perifosine on annexin-V-binding was significantly blunted by removal of extracellular Ca2+ and by addition of staurosporine (1 µM), but not by addition of SB203580 (2 µM). Conclusions: Perifosine triggers eryptosis, an effect at least in part due to Ca2+ entry and activation of staurosporine sensitive kinases.


2015 ◽  
Vol 37 (4) ◽  
pp. 1629-1640 ◽  
Author(s):  
Ghada Bouguerra ◽  
Omar Aljanadi ◽  
Rosi Bissinger ◽  
Salem Abbès ◽  
Florian Lang

Background/Aims: The antihelminthic, contraceptive, anti-inflammatory and anticancer phytochemical embelin is at least in part effective against malignancy by inducing suicidal death or apoptosis of tumor cells. Erythrocytes are similarly able to enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+-activity ([Ca2+]i), ceramide formation, oxidative stress as well as activation of p38 kinase and protein kinase C (PKC). The present study tested, whether and how embelin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide abundance utilizing specific antibodies and reactive oxygen species (ROS) from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Results: A 48 hours exposure of human erythrocytes to embelin (≥25 µM) significantly increased the percentage of annexin-V-binding cells and hemolysis. Embelin did not significantly modify [Ca2+]i. The effect of embelin on annexin-V-binding was not blunted by removal of extracellular Ca2+, by p38 kinase inhibitor SB203580 (2 µM) or by PKC inhibitor staurosporine (1 µM). Embelin did, however, significantly increase the ceramide abundance. Conclusions: Embelin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect involving ceramide formation.


2016 ◽  
Vol 38 (3) ◽  
pp. 926-938 ◽  
Author(s):  
Elena Signoretto ◽  
Jens Zierle ◽  
Rosi Bissinger ◽  
Michela Castagna ◽  
Elena Bossi ◽  
...  

Background/Aims: The multi-targeted kinase inhibitor pazopanib, a drug employed for the treatment of a wide variety of malignancies, has previously been shown to trigger apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Mechanisms involved in the triggering of eryptosis include Ca2+ entry, oxidative stress and ceramide. The present study explored, whether pazopanib induces eryptosis and, if so, whether it is effective by Ca2+ entry, oxidative stress and/or ceramide. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, reactive oxygen species (ROS) formation from DCF dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to pazopanib significantly increased the percentage of annexin-V-binding (≥ 25 µg/ml) and of shrunken erythrocytes (≥ 50 µg/ml). Pazopanib treatment further resulted in significant hemolysis (≥ 25 µg/ml). The effect of pazopanib on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Pazopanib significantly increased DCF fluorescence (50 µg/ml) and ceramide abundance (50 µg/ml). Conclusions: Pazopanib triggers eryptosis, an effect involving Ca2+ entry, oxidative stress and ceramide.


2015 ◽  
Vol 37 (5) ◽  
pp. 1807-1816 ◽  
Author(s):  
Ghada Bouguerra ◽  
Rosi Bissinger ◽  
Salem Abbès ◽  
Florian Lang

Background/Aims: Narasin, an ionophore used for the treatment of coccidiosis, has been shown to foster apoptosis of tumor cells. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by Ca2+ entry with subsequent increase of cytosolic Ca2+ activity ([Ca2+]i), and by ceramide. The present study explored, whether and how narasin induces eryptosis. Methods: Flow cytometry was employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to narasin (10 and 25 ng/ml) significantly increased the percentage of annexin-V-binding cells. Forward scatter was decreased by 1 ng/ml narasin but not by higher narasin concentrations (10 and 25 ng/ml). Narasin significantly increased Fluo3-fluorescence (10 and 25 ng/ml) and slightly, but significantly increased ceramide abundance (25 ng/ml). The effect of narasin on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Narasin triggers phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled and partially dependent on Ca2+ entry. Narasin further leads to cell shrinkage and slight increase of ceramide abundance.


Sign in / Sign up

Export Citation Format

Share Document