Characterization of New Wheat-Dasypyrum breviaristatum Introgression Lines with Superior Gene(s) for Spike Length and Stripe Rust Resistance

2018 ◽  
Vol 156 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Hongjin Wang ◽  
Zhihui Yu ◽  
Bin Li ◽  
Tao Lang ◽  
Guangrong Li ◽  
...  

Dasypyrum breviaristatum (genome VbVb) contains potentially important traits for commercial wheat production. Chromosome 2Vb of D. breviaristatum carries several desirable agronomic characters, including long spike length as well as enhanced resistance to stripe rust, which are expressed in a common wheat background. In this study, wheat-D. breviaristatum 2Vb deletion lines were produced and identified by fluorescence in situ hybridization (FISH), and 74 molecular markers specific to D. breviaristatum chromosome 2Vb were physically localized in 4 distinct chromosomal regions. New wheat-D. breviaristatum 2Vb translocation lines were also characterized by FISH. The breakpoint of the translocation T3AS.3AL-2VbS was determined by physically mapped molecular markers. Field evaluation revealed that genes affecting plant height and spike length are located on fraction length (FL) 0.65-1.00 of 2VbS, while the stripe rust resistance gene(s) are located on FL 0.40-1.00 of D. breviaristatum chromosome 2VbL. The newly characterized wheat-Dasypyrum chromosomal introgressions are of potential value for the improvement of the yield and disease resistance of wheat.

Euphytica ◽  
2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Maryam Tariq ◽  
Javed Iqbal Mirza ◽  
Shaukat Hussain ◽  
Naeela Qureshi ◽  
Kerrie Forrest ◽  
...  

Author(s):  
Shisheng Chen ◽  
Joshua Hegarty ◽  
Tao Shen ◽  
Lei Hua ◽  
Hongna Li ◽  
...  

AbstractKey messageThe stripe rust resistance geneYr34 was transferred to polyploid wheat chromosome 5AL from T. monococcumand has been used for over two centuries.Wheat stripe (or yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is currently among the most damaging fungal diseases of wheat worldwide. In this study, we report that the stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal segment of the cultivated Triticum monococcum subsp. monococcum chromosome 5AmL translocated to chromosome 5AL in polyploid wheat. The diploid wheat species Triticum monococcum (genome AmAm) is closely related to T. urartu (donor of the A genome to polyploid wheat) and has good levels of resistance against the stripe rust pathogen. When present in hexaploid wheat, the T. monococcum Yr34 resistance gene confers a moderate level of resistance against virulent Pst races present in California and the virulent Chinese race CYR34. In a survey of 1,442 common wheat genotypes, we identified 5AmL translocations of fourteen different lengths in 17.5% of the accessions, with higher frequencies in Europe than in other continents. The old European wheat variety “Mediterranean” was identified as a putative source of this translocation, suggesting that Yr34 has been used for over 200 years. Finally, we designed diagnostic CAPS and sequenced-based markers that will be useful to accelerate the deployment of Yr34 in wheat breeding programs to improve resistance to this devastating pathogen.


2014 ◽  
Vol 143 (4) ◽  
pp. 280-287 ◽  
Author(s):  
Guang-Rong Li ◽  
Jin-Mei Zhao ◽  
Dong-Hai Li ◽  
En-Nian Yang ◽  
Yu-Feng Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document