scholarly journals Introducing the Bird Chromosome Database: An Overview of Cytogenetic Studies in Birds

2020 ◽  
Vol 160 (4) ◽  
pp. 199-205 ◽  
Author(s):  
Tiago M. Degrandi ◽  
Suziane A. Barcellos ◽  
Alice L. Costa ◽  
Analía D.V. Garnero ◽  
Iris Hass ◽  
...  

Bird chromosomes, which have been investigated scientifically for more than a century, present a number of unique features. In general, bird karyotypes have a high diploid number (2n) of typically around 80 chromosomes that are divided into macro- and microchromosomes. In recent decades, FISH studies using whole chromosome painting probes have shown that the macrochromosomes evolved through both inter- and intrachromosomal rearrangements. However, chromosome painting data are available for only a few bird species, which hinders a more systematic approach to the understanding of the evolutionary history of the enigmatic bird karyotype. Thus, we decided to create an innovative database through compilation of the cytogenetic data available for birds, including chromosome numbers and the results of chromosome painting with chicken (Gallus gallus) probes. The data were obtained through an extensive literature review, which focused on cytogenetic studies published up to 2019. In the first version of the “Bird Chromosome Database (BCD)” (https://sites.unipampa.edu.br/birdchromosomedatabase) we have compiled data on the chromosome numbers of 1,067 bird species and chromosome painting data on 96 species. We found considerable variation in the diploid numbers, which ranged from 40 to 142, although most (around 50%) of the species studied up to now have between 78 and 82 chromosomes. Despite its importance for cytogenetic research, chromosome painting has been applied to less than 1% of all bird species. The BCD will enable researchers to identify the main knowledge gaps in bird cytogenetics, including the most under-sampled groups, and make inferences on chromosomal homologies in phylogenetic studies.

Hereditas ◽  
2004 ◽  
Vol 128 (3) ◽  
pp. 257-263 ◽  
Author(s):  
A. Schmitz ◽  
A. Oustry ◽  
D. Vaiman ◽  
B. Chaput ◽  
G. Frelat ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 964
Author(s):  
Svetlana A. Romanenko ◽  
Vladimir G. Malikov ◽  
Ahmad Mahmoudi ◽  
Feodor N. Golenishchev ◽  
Natalya A. Lemskaya ◽  
...  

The taxonomy of the genus Calomyscus remains controversial. According to the latest systematics the genus includes eight species with great karyotypic variation. Here, we studied karyotypes of 14 Calomyscus individuals from different regions of Iran and Turkmenistan using a new set of chromosome painting probes from a Calomyscus sp. male (2n = 46, XY; Shahr-e-Kord-Soreshjan-Cheshme Maiak Province). We showed the retention of large syntenic blocks in karyotypes of individuals with identical chromosome numbers. The only rearrangement (fusion 2/21) differentiated C. elburzensis, C. mystax mystax, and Calomyscus sp. from Isfahan Province with 2n = 44 from karyotypes of C. bailwardi, Calomyscus sp. from Shahr-e-Kord, Chahar Mahal and Bakhtiari-Aloni, and Khuzestan-Izeh Provinces with 2n = 46. The individuals from Shahdad tunnel, Kerman Province with 2n = 51–52 demonstrated non-centric fissions of chromosomes 4, 5, and 6 of the 46-chromosomal form with the formation of separate small acrocentrics. A heteromorphic pair of chromosomes in a specimen with 2n = 51 resulted from a fusion of two autosomes. C-banding and chromomycin A3-DAPI staining after G-banding showed extensive heterochromatin variation between individuals.


Author(s):  
Ivanete de Oliveira Furo ◽  
Rafael Kretschmer ◽  
Patricia C. M. O´Brien ◽  
Jorge Pereira ◽  
Analia del Valle Garnero ◽  
...  

Most Neotropical Psittacidae have a diploid number of 2n=70, and a dichotomy in chromosome patterns. Long-tailed species have biarmed macrochromosomes, while short - tailed ones have telo/acrocentric macrochromosomes. However, the use of chromosome painting with chicken and white hawk probes has demonstrated that karyotype evolution in Psittacidae includes a high number of inter/intrachromosomal rearrangements. Hence, to determine the phylogeny of Long and Short-Tailed species, and to propose a putative ancestral karyotype for this group, we constructed homology maps of Pyrrhura frontalis (PFR) and Amazona aestiva (AAE) and compared them to other previously analyzed long-tailed species. Chromosomes were analyzed by conventional staining and fluorescent in situ hybridization (FISH) using whole chromosome paints of G. gallus (GGA) and L. albicollis (LAL). Conventional staining showed a karyotype with 2n=70 in both species, with biarmed macrochromosomes in Pyrrhura frontalis and telo/acrocentric chromosomes in Amazona aestiva. Comparison of the results with the putative avian ancestral karyotype (PAK) showed fusions in P. frontalis of PAK1p/PAK4q (PFR1) and PAK6/PAK7 (PFR6) with a paracentric inversion in PFR6. However, in A. aestiva there was only the fusion between PAK6/7 (AAE7) with a paracentric inversion. Hybridizations with LAL probes confirmed these results. The results indicate that PFR retained a more basal karyotype than Anodorhynchus hyacinthinus (AHY), Ara macao (AMA) and Ara chloropterus (ACH), because these three species show the fusion PAK8/PAK9 that is not seen in PFR. Hence, we suggest that the ancestral karyotype of species with biarmed chromosomes have the fusions PAK1p/PAK4 and PAK6/PAK7 and, additionally, a pericentric inversion of PAK6/PAK7, while the fusion PAK8/PAK9 would have appeared in the common ancestor of Anodorhynchus hyacinthinus, Ara macao and Ara chloropterus. However, the species A. aestiva shows a characteristic plesiomorphic trait, since PAK1p/PAK4q and PAK8/9 fusions are absent. Our results base on chromosome rearrangements suggest the classification following the criterium of tail length may no reflect the real phylogenetic history of Neotropical Psittacidae.


2005 ◽  
Vol 13 (2) ◽  
pp. 27-32 ◽  
Author(s):  
Lawrence C. Dugan ◽  
Melissa S. Pattee ◽  
Jennifer Williams ◽  
Mike y ◽  
Karen Sorensen ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Natalya A. Lemskaya ◽  
Svetlana A. Romanenko ◽  
Yulia V. Maksimova ◽  
Asia R. Shorina ◽  
Dmitry V. Yudkin

Abstract Background The presence of small supernumerary marker chromosomes (sSMCs) in a karyotype leads to diagnostic questions because the resulting extra material may cause abnormal development depending on the origin of the duplication/triplication. Because SMCs are so small, their origin cannot be determined by conventional cytogenetic techniques, and new molecular cytogenetic methods are necessary. Here, we applied a target approach to chromosome rearrangement analysis by isolating a chromosome of interest via microdissection and using it in fluorescence in situ hybridization (FISH) as a probe in combination with whole-chromosome painting probes. This approach allows to identify origins of both the euchromatin and repeat-rich regions of a marker. Case presentation We report a case of an adult male with congenital atresia of the rectum and anus, anotia, and atresia of the external auditory canal along with hearing loss. Karyotyping and FISH analysis with whole-chromosome painting probes of acrocentric chromosomes and the constructed microdissection library of the marker chromosome reliably identified an additional chromosome in some metaphases: mos 47,XY,+idic(22)(q11.2)[14]/46,XY [23]. Conclusion We propose to use whole-chromosome libraries and microdissected chromosomes in FISH to identify SMCs enriched with repeated sequences. We show that the methodology is successful in identifying the composition of a satellited marker chromosome.


2010 ◽  
Vol 18 (4) ◽  
pp. 431-439 ◽  
Author(s):  
Vladimir Krylov ◽  
Svatava Kubickova ◽  
Jiri Rubes ◽  
Jaroslav Macha ◽  
Tereza Tlapakova ◽  
...  

2015 ◽  
Vol 111 ◽  
pp. 40-49 ◽  
Author(s):  
Maciej Wnuk ◽  
Beata Miedziak ◽  
Klaudia Kulak ◽  
Anita Panek ◽  
Ewelina Golec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document