comparative cytogenetics
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Kevin Santos da Silva ◽  
Augusto Cesar Paes de Souza ◽  
Ananda Marques Pety ◽  
Renata Coelho Rodrigues Noronha ◽  
Marcelo Ricardo Vicari ◽  
...  

Peckoltia is widely distributed genus in the Amazon and Orinoco basins and the Guiana Shield, containing 18 valid species, and distinct morphotypes still needing description in the scientific literature due to its great taxonomic complexity. This study performed a comparative chromosomal analysis of two undescribed Peckoltia species (Peckoltia sp. 3 Jarumã and Peckoltia sp. 4 Caripetuba) from the Brazilian Amazon using conventional chromosome bands methods and in situ localization of the repetitive DNA (5S and 18S rRNA and U1 snRNA genes and telomeric sequences). Both species presented 2n = 52 but differed in their karyotype formula, probably due to inversions or translocations. The nucleolus organizer regions (NORs) showed distal location on a probably homeologous submetacentric pair in both species, besides an extra signal in a subtelocentric chromosome in Peckoltia sp. 4 Caripetuba. Heterochromatin occurred in large blocks, with different distributions in the species. The mapping of the 18S and 5S rDNA, and U1 snDNA showed differences in locations and number of sites. No interstitial telomeric sites were detected using the (TTAGGG)n probes. Despite 2n conservationism in Peckoltia species, the results showed variation in karyotype formulas, chromosomal bands, and locations of repetitive sites, demonstrating great chromosomal diversity. A proposal for Peckoltia karyotype evolution was inferred in this study based on the diversity of location and number of chromosomal markers analyzed. A comparative analysis with other Peckoltia karyotypes described in the literature, their biogeography patterns, and molecular phylogeny led to the hypothesis that the derived karyotype was raised in the left bank of the Amazon River.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258003
Author(s):  
Ramon Marin Favarato ◽  
Leila Braga Ribeiro ◽  
Alber Campos ◽  
Jorge Ivan Rebelo Porto ◽  
Celeste Mutuko Nakayama ◽  
...  

Serrasalmidae has high morphological and chromosomal diversity. Based on molecular hypotheses, the family is currently divided into two subfamilies, Colossomatinae and Serrasalminae, with Serrasalminae composed of two tribes: Myleini (comprising most of pacus species) and Serrasalmini (represented by Metynnis, Catoprion, and remaining piranha’s genera). This study aimed to analyze species of the tribes Myleini (Myloplus asterias, M. lobatus, M. rubripinnis, M. schomburgki, and Tometes camunani) and Serrasalmini (Metynnis cuiaba, M. hypsauchen, and M. longipinnis) using classical and molecular cytogenetic techniques in order to understand the chromosomal evolution of the family. The four species of the genus Myloplus and T. camunani presented 2n = 58 chromosomes, while the species of Metynnis presented 2n = 62 chromosomes. The distribution of heterochromatin occurred predominantly in pericentromeric regions in all species. Tometes camunani and Myloplus spp. presented only one site with 5S rDNA. Multiple markers of 18S rDNA were observed in T. camunani, M. asterias, M. lobatus, M. rubripinnis, and M. schomburgkii. For Metynnis, however, synteny of the 18S and 5S rDNA was observed in the three species, in addition to an additional 5S marker in M. longipinnis. These data, when superimposed on the phylogeny of the family, suggest a tendency to increase the diploid chromosome number from 54 to 62 chromosomes, which occurred in a nonlinear manner and is the result of several chromosomal rearrangements. In addition, the different karyotype formulas and locations of ribosomal sequences can be used as cytotaxonomic markers and assist in the identification of species.


Caryologia ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 43-51
Author(s):  
Alice Lemos Costa ◽  
Cassiane Furlan Lopes ◽  
Marcelo Santos de Souza ◽  
Suziane Alves Barcellos ◽  
Pâmela Giordani Vielmo ◽  
...  

Chromosomal rearrangements are an important process in the evolution of species. It is assumed that these rearrangements occur near repetitive sequences and heterochromatic regions. Avian karyotypes have diverse chromosomal band patterns and have been used as the parameters for phylogenetic studies. Although the group has a high diversity of species, no more than 12% has been analyzed cytogenetically, and the Parulidae family are extremely underrepresented in these studies. The aim of this study was to detect independent or simultaneous chromosomal rearrangements, and also to analyze chromosomal banding convergences and divergences of three Wood-Warblers species (Myiothlypis leucoblephara, Basileuterus culicivorus, and Setophaga pitiayumi). Our CBG-band results reveal an unusual W sex chromosome in the three studied species, containing a telomeric euchromatic region. The GTG and RBG bands identify specific regions in the macrochromosomes involved in the rearrangements. Cytogenetic data confirm the identification of speciation processes at the karyotypic of this group.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 964
Author(s):  
Svetlana A. Romanenko ◽  
Vladimir G. Malikov ◽  
Ahmad Mahmoudi ◽  
Feodor N. Golenishchev ◽  
Natalya A. Lemskaya ◽  
...  

The taxonomy of the genus Calomyscus remains controversial. According to the latest systematics the genus includes eight species with great karyotypic variation. Here, we studied karyotypes of 14 Calomyscus individuals from different regions of Iran and Turkmenistan using a new set of chromosome painting probes from a Calomyscus sp. male (2n = 46, XY; Shahr-e-Kord-Soreshjan-Cheshme Maiak Province). We showed the retention of large syntenic blocks in karyotypes of individuals with identical chromosome numbers. The only rearrangement (fusion 2/21) differentiated C. elburzensis, C. mystax mystax, and Calomyscus sp. from Isfahan Province with 2n = 44 from karyotypes of C. bailwardi, Calomyscus sp. from Shahr-e-Kord, Chahar Mahal and Bakhtiari-Aloni, and Khuzestan-Izeh Provinces with 2n = 46. The individuals from Shahdad tunnel, Kerman Province with 2n = 51–52 demonstrated non-centric fissions of chromosomes 4, 5, and 6 of the 46-chromosomal form with the formation of separate small acrocentrics. A heteromorphic pair of chromosomes in a specimen with 2n = 51 resulted from a fusion of two autosomes. C-banding and chromomycin A3-DAPI staining after G-banding showed extensive heterochromatin variation between individuals.


2021 ◽  
pp. 1-11
Author(s):  
David S. da Silva ◽  
Heriberto F. da Silva Filho ◽  
Marcelo B. Cioffi ◽  
Edivaldo H.C. de Oliveira ◽  
Anderson J.B. Gomes

With 82 species currently described, the genus <i>Leptodactylus</i> is the most diverse and representative one in the family Leptodactylidae. Concerning chromosomal organization, this genus represents an interesting and underexplored group since data from molecular cytogenetics are incipient, and little is known about the organization and distribution of repetitive DNA elements in the karyotypes. In this sense, this study aimed at providing a comparative analysis in 4 <i>Leptodactylus</i> species (<i>L. macrosternum, L. pentadactylus, L. fuscus,</i> and <i>Leptodactylus</i> cf<i>. podicipinus</i>), combining conventional cytogenetics (Giemsa staining, C-banding, and AgNOR staining) and mapping of molecular markers (18S rDNA, telomeric and microsatellite probes), to investigate mechanisms underlying their karyotype differentiation process. The results showed that all species had karyotypes with 2n = 22 and FN = 44, except for <i>Leptodactylus</i> cf. <i>podicipinus</i> which presented FN = 36. The 18S rDNA was observed in pair 8 of all analyzed species (corresponding to pair 4 in <i>L. pentadactylus</i>), coinciding with the secondary constrictions and AgNOR staining. FISH with microsatellite DNA probes demonstrated species-specific patterns, as well as an association of these repetitive sequences with constitutive heterochromatin blocks and ribosomal DNA clusters, revealing the dynamics of microsatellites in the genome of the analyzed species. In summary, our data demonstrate an ongoing process of genomic divergence inside species with almost similar karyotype, driven most likely by a series of pericentric inversions, followed by differential accumulation of repetitive sequences.


2021 ◽  
Vol 15 (2) ◽  
pp. 89-99
Author(s):  
Ricardo Firmino de Sousa ◽  
Paulo Cesar Venere ◽  
Karina de Cassia Faria

Dermanura Gervais, 1856 is represented by small frugivorous bats of the Stenodermatinae subfamily. The taxonomy of this group presents controversies and has been subject to changes, especially since the morphological characters evaluated have left gaps that are difficult to fill regarding good species characterization. Previous studies performed in Dermanura cinerea Gervais, 1856 found that the karyotype of this species has a diploid number of chromosomes equal to 30 and 56 autosomal arms. The objective of the present study was to describe, for the first time, the karyotypes of the species Dermanura anderseni (Osgood, 1916) and Dermanura gnoma (Handley, 1987) based on classical cytogenetic markers. For both species, the diploid number found was 2n = 30 and NFa = 56. Two pairs of chromosomes showed markings of the nucleolus organizing regions (AgNORs) in the species D. anderseni and only one pair in D. gnoma, differing from what has already been described for D. cinerea. The two species analyzed here also showed differences in the sex chromosome system, with D. gnoma showing a neo-XY type system while in D. anderseni the classic XY sexual system was observed. In both species, visualization of the constitutive heterochromatin occurred in the pericentromeric region of all chromosomes, as well as in the short arms of the subtelocentric chromosomes. The present work represents an important expansion of karyotypic information for the subfamily Stenodermatinae, bringing chromosomal features that are possible to use in the taxonomic implications of the group.


2021 ◽  
Vol 15 (2) ◽  
pp. 89-99
Author(s):  
Ricardo Firmino de Sousa ◽  
Paulo Cesar Venere ◽  
Karina de Cassia Faria

Dermanura Gervais, 1856 is represented by small frugivorous bats of the Stenodermatinae subfamily. The taxonomy of this group presents controversies and has been subject to changes, especially since the morphological characters evaluated have left gaps that are difficult to fill regarding good species characterization. Previous studies performed in Dermanura cinerea Gervais, 1856 found that the karyotype of this species has a diploid number of chromosomes equal to 30 and 56 autosomal arms. The objective of the present study was to describe, for the first time, the karyotypes of the species Dermanura anderseni (Osgood, 1916) and Dermanura gnoma (Handley, 1987) based on classical cytogenetic markers. For both species, the diploid number found was 2n = 30 and NFa = 56. Two pairs of chromosomes showed markings of the nucleolus organizing regions (AgNORs) in the species D. anderseni and only one pair in D. gnoma, differing from what has already been described for D. cinerea. The two species analyzed here also showed differences in the sex chromosome system, with D. gnoma showing a neo-XY type system while in D. anderseni the classic XY sexual system was observed. In both species, visualization of the constitutive heterochromatin occurred in the pericentromeric region of all chromosomes, as well as in the short arms of the subtelocentric chromosomes. The present work represents an important expansion of karyotypic information for the subfamily Stenodermatinae, bringing chromosomal features that are possible to use in the taxonomic implications of the group.


2020 ◽  
Vol 14 (4) ◽  
pp. 639-643
Author(s):  
Caio Augusto Gomes Goes ◽  
Sandro Natal Daniel ◽  
Lucas Henrique Piva ◽  
George Shigueki Yasui ◽  
Roberto Ferreira Artoni ◽  
...  

Astyanax Baird et Girard, 1854, is one of the largest genera in the family Characidae and comprises 177 valid species. This genus has been the focus of cytogenetic studies primarily owing to the presence of B chromosomes and high karyotypic diversity among different populations. The intense genetic variability in Astyanax is one of the factors responsible for the occurrence of species complexes, which are groups (1) with certain difficulties in establishing common genetic pools or (2) belonging to different cryptic species. To evaluate cytogenetic marker inheritance and the possibility of the identification of these hybrids, this study aimed to describe cytogenetic hybrids from three strains of species of the genera Astyanax and Hyphessobrycon Eigenmann, 1908. A. lacustris Lütken, 1875, A. schubarti Britski, 1964, A. fasciatus Cuvier, 1819, and H. anisitsi Eigenmann, 1907 were used to generate three hybrid lineages. The diploid number, heterochromatin sites, and ribosomal genes (18S and 5S rDNA) of the parental strains and the hybrids were analyzed. The results indicated that the three hybrid lineages had cytogenetic markers of both parents, presenting Mendelian inheritance. However, differences in distribution of heterochromatic blocks were observed between the hybrids and the parent strains. Our results allowed the identification of the hybrid strains based on the cytogenetic markers applied, reinforcing the efficiency of cytogenetic markers as tools for identification and indicating that such events may increase the karyotypic diversity in the genera Astyanax and Hyphessobrycon.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Phuong T. N. Hoang ◽  
Anne Fiebig ◽  
Petr Novák ◽  
Jiří Macas ◽  
Hieu X. Cao ◽  
...  

Abstract Duckweeds are small, free-floating, morphologically highly reduced organisms belonging to the monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species’ genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia.


Sign in / Sign up

Export Citation Format

Share Document