Accuracy and Safety of Customized Stereotactic Fixtures for Stereoelectroencephalography in Pediatric Patients

Author(s):  
Constantin Pistol ◽  
Andrei Daneasa ◽  
Jean Ciurea ◽  
Alin Rasina ◽  
Andrei Barborica ◽  
...  

Stereoelectroencephalography (SEEG) in children with intractable epilepsy presents particular challenges. Their thin and partially ossified cranium, specifically in the temporal area, is prone to fracture while attaching stereotactic systems to the head or stabilizing the head in robot’s field of action. Postponing SEEG in this special population of patients can have serious consequences, reducing their chances of becoming seizure-free and impacting their social and cognitive development. This study demonstrates the safety and accuracy offered by a frameless personalized 3D printed stereotactic implantation system for SEEG investigations in children under 4 years of age. SEEG was carried out in a 3-year-old patient with drug-resistant focal epilepsy, based on a right temporal-perisylvian epileptogenic zone hypothesis. Fifteen intracerebral electrodes were placed using a StarFix patient-customized stereotactic fixture. The median lateral entry point localization error of the electrodes was 0.90 mm, median lateral target point localization error was 1.86 mm, median target depth error was 0.83 mm, and median target point localization error was 1.96 mm. There were no perioperative complications. SEEG data led to a tailored right temporal-insular-opercular resection, with resulting seizure freedom (Engel IA). In conclusion, patient-customized stereotactic fixtures are a safe and accurate option for SEEG exploration in young children.

Neurosurgery ◽  
2015 ◽  
Vol 78 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Jorge González-Martínez ◽  
Juan Bulacio ◽  
Susan Thompson ◽  
John Gale ◽  
Saksith Smithason ◽  
...  

ABSTRACT BACKGROUND: Robot-assisted stereoelectroencephalography (SEEG) may represent a simplified, precise, and safe alternative to the more traditional SEEG techniques. OBJECTIVE: To report our clinical experience with robotic SEEG implantation and to define its utility in the management of patients with medically refractory epilepsy. METHODS: The prospective observational analyses included all patients with medically refractory focal epilepsy who underwent robot-assisted stereotactic placement of depth electrodes for extraoperative brain monitoring between November 2009 and May 2013. Technical nuances of the robotic implantation technique are presented, as well as an analysis of demographics, time of planning and procedure, seizure outcome, in vivo accuracy, and procedure-related complications. RESULTS: One hundred patients underwent 101 robot-assisted SEEG procedures. Their mean age was 33.2 years. In total, 1245 depth electrodes were implanted. On average, 12.5 electrodes were implanted per patient. The time of implantation planning was 30 minutes on average (range, 15-60 minutes). The average operative time was 130 minutes (range, 45-160 minutes). In vivo accuracy (calculated in 500 trajectories) demonstrated a median entry point error of 1.2 mm (interquartile range, 0.78-1.83 mm) and a median target point error of 1.7 mm (interquartile range, 1.20-2.30 mm). Of the group of patients who underwent resective surgery (68 patients), 45 (66.2%) gained seizure freedom status. Mean follow-up was 18 months. The total complication rate was 4%. CONCLUSION: The robotic SEEG technique and method were demonstrated to be safe, accurate, and efficient in anatomically defining the epileptogenic zone and subsequently promoting sustained seizure freedom status in patients with difficult-to-localize seizures.


Neurosurgery ◽  
2012 ◽  
Vol 72 (3) ◽  
pp. 353-366 ◽  
Author(s):  
Francesco Cardinale ◽  
Massimo Cossu ◽  
Laura Castana ◽  
Giuseppe Casaceli ◽  
Marco Paolo Schiariti ◽  
...  

Abstract BACKGROUND: Stereoelectroencephalography (SEEG) methodology, originally developed by Talairach and Bancaud, is progressively gaining popularity for the presurgical invasive evaluation of drug-resistant epilepsies. OBJECTIVE: To describe recent SEEG methodological implementations carried out in our center, to evaluate safety, and to analyze in vivo application accuracy in a consecutive series of 500 procedures with a total of 6496 implanted electrodes. METHODS: Four hundred nineteen procedures were performed with the traditional 2-step surgical workflow, which was modified for the subsequent 81 procedures. The new workflow entailed acquisition of brain 3-dimensional angiography and magnetic resonance imaging in frameless and markerless conditions, advanced multimodal planning, and robot-assisted implantation. Quantitative analysis for in vivo entry point and target point localization error was performed on a sub-data set of 118 procedures (1567 electrodes). RESULTS: The methodology allowed successful implantation in all cases. Major complication rate was 12 of 500 (2.4%), including 1 death for indirect morbidity. Median entry point localization error was 1.43 mm (interquartile range, 0.91-2.21 mm) with the traditional workflow and 0.78 mm (interquartile range, 0.49-1.08 mm) with the new one (P < 2.2 × 10−16). Median target point localization errors were 2.69 mm (interquartile range, 1.89-3.67 mm) and 1.77 mm (interquartile range, 1.25-2.51 mm; P < 2.2 × 10−16), respectively. CONCLUSION: SEEG is a safe and accurate procedure for the invasive assessment of the epileptogenic zone. Traditional Talairach methodology, implemented by multimodal planning and robot-assisted surgery, allows direct electrical recording from superficial and deep-seated brain structures, providing essential information in the most complex cases of drug-resistant epilepsy.


2019 ◽  
Author(s):  
Erin D’Agostino ◽  
John Kanter ◽  
Yinchen Song ◽  
Joshua P Aronson

Abstract BACKGROUND Implantation of depth electrodes to localize epileptogenic foci in patients with drug-resistant epilepsy can be accomplished using traditional rigid frame-based, custom frameless, and robotic stereotactic systems. OBJECTIVE To evaluate the accuracy of electrode implantation using the FHC microTargeting platform, a custom frameless platform, without a rigid insertion cannula. METHODS A total of 182 depth electrodes were implanted in 13 consecutive patients who underwent stereoelectroencephalography (SEEG) for drug-resistant epilepsy using the microTargeting platform and depth electrodes without a rigid guide cannula. MATLAB was utilized to evaluate targeting accuracy. Three manual coordinate measurements with high inter-rater reliability were averaged. RESULTS Patients were predominantly male (77%) with average age 35.62 (SD 11.0, range 21-57) and average age of epilepsy onset at 13.4 (SD 7.2, range 3-26). A mean of 14 electrodes were implanted (range 10-18). Mean operative time was 144 min (range 104-176). Implantation of 3 out of 182 electrodes resulted in nonoperative hemorrhage (2 small subdural hematomas and one small subarachnoid hemorrhage). Putative location of onset was identified in all patients. We demonstrated a median lateral target point localization error (LTPLE) of 3.95 mm (IQR 2.18-6.23), a lateral entry point localization error (LEPLE) of 1.98 mm (IQR 1.2-2.85), a target depth error of 1.71 mm (IQR 1.03-2.33), and total target point localization error (TPLE) of 4.95 mm (IQR 2.98-6.85). CONCLUSION Utilization of the FHC microTargeting platform without the use of insertion cannulae is safe, effective, and accurate. Localization of seizure foci was accomplished in all patients and accuracy of depth electrode placement was satisfactory.


2019 ◽  
Vol 5 (3) ◽  
pp. 189-202
Author(s):  
Jianjun Bai ◽  
Wenjing Zhou ◽  
Haixiang Wang ◽  
Bingqing Zhang ◽  
Jiuluan Lin ◽  
...  

Stereoelectroencephalography (SEEG) has been widely used in the presurgical evaluation of patients with medically intractable epilepsy. In the past, SEEG was commonly used as a method for mapping and localizing the epileptogenic zone (EZ). Since 2004, several studies have been conducted to examine the effectiveness of SEEG-guided radiofrequency thermocoagulation (RF-TC) in treating refractory epilepsy. However, the seizure-free and responder rates varied greatly across studies. We aimed to analyze the outcome of 56 patients who were treated with SEEG-guided RF-TC to evaluate the effectiveness of this treatment. SEEG-guided RF-TC can be considered as a treatment for refractory epilepsy. However, due to its limited efficacy, SEEG-guided RF-TC might be regarded as a temporary treatment performed under SEEG rather than a promising treatment for refractory epilepsy.


Neurosurgery ◽  
2014 ◽  
Vol 75 (3) ◽  
pp. 258-268 ◽  
Author(s):  
Jorge Gonzalez-Martinez ◽  
Jeffrey Mullin ◽  
Juan Bulacio ◽  
Ajay Gupta ◽  
Rei Enatsu ◽  
...  

Abstract BACKGROUND: Although stereoelectroencephalography (SEEG) has been shown to be a valuable tool for preoperative decision making in focal epilepsy, there are few reports addressing the utility and safety of SEEG methodology applied to children and adolescents. OBJECTIVE: To present the results of our early experience using SEEG in pediatric patients with difficult-to-localize epilepsy who were not considered candidates for subdural grid evaluation. METHODS: Thirty children and adolescents with the diagnosis of medically refractory focal epilepsy (not considered ideal candidates for subdural grids and strip placement) underwent SEEG implantation. Demographics, electrophysiological localization of the hypothetical epileptogenic zone, complications, and seizure outcome after resections were analyzed. RESULTS: Eighteen patients (60%) underwent resections after SEEG implantations. In patients who did not undergo resections (12 patients), reasons included failure to localize the epileptogenic zone (4 patients); multifocal epileptogenic zone (4 patients); epileptogenic zone located in eloquent cortex, preventing resection (3 patients); and improvement in seizures after the implantation (1 patient). In patients who subsequently underwent resections, 10 patients (55.5%) were seizure free (Engel class I) and 5 patients (27.7%) experienced seizure improvement (Engel class II or III) at the end of the follow-up period (mean, 25.9 months; range, 12 to 47 months). The complication rate in SEEG implantations was 3%. CONCLUSION: The SEEG methodology is safe and should be considered in children/adolescents with difficult-to-localize epilepsy. When applied to highly complex and difficult-to-localize pediatric patients, SEEG may provide an additional opportunity for seizure freedom in association with a low morbidity rate.


2013 ◽  
Vol 34 (6) ◽  
pp. E9 ◽  
Author(s):  
Sumeet Vadera ◽  
Lara Jehi ◽  
Richard C. Burgess ◽  
Katherine Shea ◽  
Andreas V. Alexopoulos ◽  
...  

Object During the presurgical evaluation of patients with medically intractable focal epilepsy, a variety of noninvasive studies are performed to localize the hypothetical epileptogenic zone and guide the resection. Magnetoencephalography (MEG) is becoming increasingly used in the clinical realm for this purpose. No investigators have previously reported on coregisteration of MEG clusters with postoperative resection cavities to evaluate whether complete “clusterectomy” (resection of the area associated with MEG clusters) was performed or to compare these findings with postoperative seizure-free outcomes. Methods The authors retrospectively reviewed the charts and imaging studies of 65 patients undergoing MEG followed by resective epilepsy surgery from 2009 until 2012 at the Cleveland Clinic. Preoperative MEG studies were fused with postoperative MRI studies to evaluate whether clusters were within the resected area. These data were then correlated with postoperative seizure freedom. Results Sixty-five patients were included in this study. The average duration of follow-up was 13.9 months, the mean age at surgery was 23.1 years, and the mean duration of epilepsy was 13.7 years. In 30 patients, the main cluster was located completely within the resection cavity, in 28 it was completely outside the resection cavity, and in 7 it was partially within the resection cavity. Seventy-four percent of patients were seizure free at 12 months after surgery, and this rate decreased to 60% at 24 months. Improved likelihood of seizure freedom was seen with complete clusterectomy in patients with localization outside the temporal lobe (extra–temporal lobe epilepsy) (p = 0.04). Conclusions In patients with preoperative MEG studies that show clusters in surgically accessible areas outside the temporal lobe, we suggest aggressive resection to improve the chances for seizure freedom. When the cluster is found within the temporal lobe, further diagnostic testing may be required to better localize the epileptogenic zone.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Suresh Gurbani ◽  
Sirichai Chayasirisobhon ◽  
Leslie Cahan ◽  
SooHo Choi ◽  
Bruce Enos ◽  
...  

To study the efficacy of vagus nerve stimulation (VNS) therapy as an adjunctive treatment for intractable epilepsy in patients under 12 years of age, we analyzed 2-year postimplant data of 35 consecutive patients. Of the 35 patients, 18 (51.4%) at 6 months, 18 (51.4%) at 12 months, and 21 (60.1%) at 24 months showed ≥50% reduction in seizure frequency (responders). Although incremental seizure freedom was noted, no patient remained seizure-free throughout the 3 study periods. Partial response (≥50% seizure reduction in 2 or less study periods) was seen in 8 (22.9%) patients. Twelve patients (34.3%) were nonresponders. Out of 29 patients with primary generalized epilepsy, 20 (68.9%) and, out of 6 patients with focal epilepsy, 3 (50%) had ≥50% seizure control in at least one study period. No major complications or side effects requiring discontinuation of VNS therapy were encountered. We conclude that (1) patients with intractable primary generalized epilepsy respond better to VNS therapy, (2) cumulative effect of neuromodulation with improving responder rate to seizure freedom with continuation of VNS therapy is noted, and (3) VNS therapy is safe and is well tolerated in children receiving implant under 12 years of age.


Neurosurgery ◽  
2015 ◽  
Vol 77 (4) ◽  
pp. 517-524 ◽  
Author(s):  
Aria Fallah ◽  
Shaun D. Rodgers ◽  
Alexander G. Weil ◽  
Sumeet Vadera ◽  
Alireza Mansouri ◽  
...  

Abstract BACKGROUND: There are no established variables that predict the success of curative resective epilepsy surgery in children with tuberous sclerosis complex (TSC). OBJECTIVE: We performed a multicenter observational study to identify preoperative factors associated with seizure outcome in children with TSC undergoing resective epilepsy surgery. METHODS: A retrospective chart review was performed in eligible children at New York Medical Center, Miami Children's Hospital, Cleveland Clinic Foundation, BC Children's Hospital, Hospital for Sick Children, and Sainte-Justine Hospital between January 2005 and December 2013. A time-to-event analysis was performed. The “event” was defined as seizures after resective epilepsy surgery. RESULTS: Seventy-four patients (41 male) were included. The median age of the patients at the time of surgery was 120 months (range, 3-216 months). The median time to seizure recurrence was 24.0 ± 12.7 months. Engel Class I outcome was achieved in 48 (65%) and 37 (50%) patients at 1- and 2-year follow-up, respectively. On univariate analyses, younger age at seizure onset (hazard ratio [HR]: 2.03, 95% confidence interval [CI]: 1.03-4.00, P = .04), larger size of predominant tuber (HR: 1.03, 95% CI: 0.99-1.06, P = .12), and resection larger than a tuberectomy (HR: 1.86, 95% CI: 0.92-3.74, P = .084) were associated with a longer duration of seizure freedom. In multivariate analyses, resection larger than a tuberectomy (HR: 2.90, 95% CI: 1.17-7.18, P = .022) was independently associated with a longer duration of seizure freedom. CONCLUSION: In this large consecutive cohort of children with TSC and medically intractable epilepsy, a greater extent of resection (more than just the tuber) is associated with a greater probability of seizure freedom. This suggests that the epileptogenic zone may include the cortex surrounding the presumed offending tuber.


2016 ◽  
Vol 18 (5) ◽  
pp. 523-535 ◽  
Author(s):  
Alexander G. Weil ◽  
Ngoc Minh D. Le ◽  
Prasanna Jayakar ◽  
Trevor Resnick ◽  
Ian Miller ◽  
...  

OBJECTIVE Seizure onset in the insular cortex as a cause of refractory epilepsy is underrepresented in the pediatric population, possibly due to difficulties localizing seizure onset in deep anatomical structures and limited surgical access to the insula, a complex anatomical structure with a rich overlying vascular network. Insular seizure semiology may mimic frontal, temporal, or parietal lobe semiology, resulting in false localization, incomplete resection, and poor outcome. METHODS The authors retrospectively reviewed the records of all pediatric patients who underwent insular cortical resections for intractable epilepsy at Miami Children's Hospital from 2009 to 2015. Presurgical evaluation included video electroencephalography monitoring and anatomical/functional neuroimaging. All patients underwent excisional procedures utilizing intraoperative electrocorticography or extraoperative subdural/depth electrode recording. RESULTS Thirteen children (age range 6 months–16 years) with intractable focal epilepsy underwent insular-opercular resection. Seven children described symptoms that were suggestive of insular seizure origin. Discharges on scalp EEG revealed wide fields. Four patients were MRI negative (i.e., there were no insular or brain abnormalities on MRI), 4 demonstrated insular signal abnormalities, and 5 had extrainsular abnormalities. Ten patients had insular involvement on PET/SPECT. All patients underwent invasive investigation with insular sampling; in 2 patients resection was based on intraoperative electrocorticography, whereas 11 underwent surgery after invasive EEG monitoring with extraoperative monitoring. Four patients required an extended insular resection after a failed initial surgery. Postoperatively, 2 patients had transient hemiplegia. No patients had new permanent neurological deficits. At the most recent follow-up (mean 43.8 months), 9 (69%) children were seizure free and 1 had greater than 90% seizure reduction. CONCLUSIONS Primary insular seizure origin should be considered in children with treatment-resistant focal seizures that are believed to arise within the perisylvian region based on semiology, widespread electrical field on scalp EEG, or insular abnormality on anatomical/functional neuroimaging. There is a reasonable chance of seizure freedom in this group of patients, and the surgical risks are low.


Neurosurgery ◽  
2013 ◽  
Vol 72 (5) ◽  
pp. 723-729 ◽  
Author(s):  
Sumeet Vadera ◽  
Jeffrey Mullin ◽  
Juan Bulacio ◽  
Imad Najm ◽  
William Bingaman ◽  
...  

Abstract BACKGROUND: Despite the use of invasive subdural recording, failure to localize or resect the epileptogenic zone (EZ) occurs. Potential causes for this include EZ originating outside of the subdural grid coverage area, involvement of eloquent cortex, or complications requiring removal of electrodes without seizure localization. No study has examined the safety and efficacy of stereoelectroencephalography (SEEG) after subdural grid placement. OBJECTIVE: To determine the efficacy of SEEG in patients who have previously undergone subdural grid placement. METHODS: A prospective analysis was performed on 14 patients who had subdural grid evaluation and underwent subsequent SEEG monitoring. The follow-up period after the SEEG-guided resections ranged from 11 months to 34 months with an average follow-up of 20.1 months. Magnetic resonance imaging findings, EZ localization, outcomes, type of surgery, and perioperative complications were evaluated. RESULTS: Ten patients (71%) underwent a resection after SEEG reimplantation. Of the 4 patients (29%) not undergoing resection, 2 had seizures arising from eloquent cortex, 1 had bitemporal epilepsy, and 1 had a previous temporal lobectomy contralateral to the EZ. An estimate of the EZ was achieved in all patients based on interictal and ictal recordings. In patients undergoing resection, 60% were seizure-free at 11 months. Perioperative complications were minimal and included 1 abscess, which required burr-hole drainage and antibiotics. CONCLUSION: SEEG is a safe and effective method after subdural grid placement is inconclusive, providing an additional opportunity for seizure freedom in this highly challenging group of patients.


Sign in / Sign up

Export Citation Format

Share Document