Stereoencephalography Electrode Placement Accuracy and Utility Using a Frameless Insertion Platform Without a Rigid Cannula

2019 ◽  
Author(s):  
Erin D’Agostino ◽  
John Kanter ◽  
Yinchen Song ◽  
Joshua P Aronson

Abstract BACKGROUND Implantation of depth electrodes to localize epileptogenic foci in patients with drug-resistant epilepsy can be accomplished using traditional rigid frame-based, custom frameless, and robotic stereotactic systems. OBJECTIVE To evaluate the accuracy of electrode implantation using the FHC microTargeting platform, a custom frameless platform, without a rigid insertion cannula. METHODS A total of 182 depth electrodes were implanted in 13 consecutive patients who underwent stereoelectroencephalography (SEEG) for drug-resistant epilepsy using the microTargeting platform and depth electrodes without a rigid guide cannula. MATLAB was utilized to evaluate targeting accuracy. Three manual coordinate measurements with high inter-rater reliability were averaged. RESULTS Patients were predominantly male (77%) with average age 35.62 (SD 11.0, range 21-57) and average age of epilepsy onset at 13.4 (SD 7.2, range 3-26). A mean of 14 electrodes were implanted (range 10-18). Mean operative time was 144 min (range 104-176). Implantation of 3 out of 182 electrodes resulted in nonoperative hemorrhage (2 small subdural hematomas and one small subarachnoid hemorrhage). Putative location of onset was identified in all patients. We demonstrated a median lateral target point localization error (LTPLE) of 3.95 mm (IQR 2.18-6.23), a lateral entry point localization error (LEPLE) of 1.98 mm (IQR 1.2-2.85), a target depth error of 1.71 mm (IQR 1.03-2.33), and total target point localization error (TPLE) of 4.95 mm (IQR 2.98-6.85). CONCLUSION Utilization of the FHC microTargeting platform without the use of insertion cannulae is safe, effective, and accurate. Localization of seizure foci was accomplished in all patients and accuracy of depth electrode placement was satisfactory.

2016 ◽  
Vol 18 (5) ◽  
pp. 511-522 ◽  
Author(s):  
Alexander G. Weil ◽  
Aria Fallah ◽  
Evan C. Lewis ◽  
Sanjiv Bhatia

OBJECTIVE Insular lobe epilepsy (ILE) is an under-recognized cause of extratemporal epilepsy and explains some epilepsy surgery failures in children with drug-resistant epilepsy. The diagnosis of ILE usually requires invasive investigation with insular sampling; however, the location of the insula below the opercula and the dense middle cerebral artery vasculature renders its sampling challenging. Several techniques have been described, ranging from open direct placement of orthogonal subpial depth and strip electrodes through a craniotomy to frame-based stereotactic placement of orthogonal or oblique electrodes using stereo-electroencephalography principles. The authors describe an alternative method for sampling the insula, which involves placing insular depth electrodes along the long axis of the insula through the insular apex following dissection of the sylvian fissure in conjunction with subdural electrodes over the lateral hemispheric/opercular region. The authors report the feasibility, advantages, disadvantages, and role of this approach in investigating pediatric insular-opercular refractory epilepsy. METHODS The authors performed a retrospective analysis of all children (< 18 years old) who underwent invasive intracranial studies involving the insula between 2002 and 2015. RESULTS Eleven patients were included in the study (5 boys). The mean age at surgery was 7.6 years (range 0.5–16 years). All patients had drug-resistant epilepsy as defined by the International League Against Epilepsy and underwent comprehensive noninvasive epilepsy surgery workup. Intracranial monitoring was performed in all patients using 1 parasagittal insular electrode (1 patient had 2 electrodes) in addition to subdural grids and strips tailored to the suspected epileptogenic zone. In 10 patients, extraoperative monitoring was used; in 1 patient, intraoperative electrocorticography was used alone without extraoperative monitoring. The mean number of insular contacts was 6.8 (range 4–8), and the mean number of fronto-parieto-temporal hemispheric contacts was 61.7 (range 40–92). There were no complications related to placement of these depth electrodes. All 11 patients underwent subsequent resective surgery involving the insula. CONCLUSIONS Parasagittal transinsular apex depth electrode placement is a feasible alternative to orthogonally placed open or oblique-placed stereotactic methodologies. This method is safe and best suited for suspected unilateral cases with a possible extensive insular-opercular epileptogenic zone.


Author(s):  
Shiwei Song ◽  
Yihai Dai ◽  
Zhen Chen ◽  
Songsheng Shi

Abstract Objective The objective of the study was to evaluate the feasibility and accuracy of frameless stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy using the VarioGuide system. Methods The VarioGuide frameless navigation system was used to implant SEEG electrodes in patients with medically drug-resistant epilepsy. Demographic data, surgery duration, number of electrodes, and complications were retrospectively analyzed. Accuracy was compared by measuring the distance between the planned and actual electrode positions as determined by postoperative computed tomography images. Results A total of 141 SEEG electrodes were implanted in 19 patients from May 2015 to December 2018 with an average of 7.42 (range: 4–10) leads per patient. The average entry point localization error (EPLE) was 1.96 ± 0.47 mm (range: 0.32–3.29) and average target point localization error (TPLE) was 2.47 ± 0.79 mm (range: 0.72–4.83). The average operating time per lead (OTPL) was 14.16 ± 2.68 minutes (range: 8.64–21.58). No complications occurred. Conclusion The VarioGuide frameless navigation system can be an effective method for SEEG electrode implantation in patients with drug-resistant epilepsy, particularly when the electrodes are concentrated in a relatively small region and the number of implanted electrodes is small.


2019 ◽  
Vol 23 (3) ◽  
pp. 297-302 ◽  
Author(s):  
Julia D. Sharma ◽  
Kiran K. Seunarine ◽  
Muhammad Zubair Tahir ◽  
Martin M. Tisdall

OBJECTIVEThe aim of this study was to compare the accuracy of optical frameless neuronavigation (ON) and robot-assisted (RA) stereoelectroencephalography (SEEG) electrode placement in children, and to identify factors that might increase the risk of misplacement.METHODSThe authors undertook a retrospective review of all children who underwent SEEG at their institution. Twenty children were identified who underwent stereotactic placement of a total of 218 electrodes. Six procedures were performed using ON and 14 were placed using a robotic assistant. Placement error was calculated at cortical entry and at the target by calculating the Euclidean distance between the electrode and the planned cortical entry and target points. The Mann-Whitney U-test was used to compare the results for ON and RA placement accuracy. For each electrode placed using robotic assistance, extracranial soft-tissue thickness, bone thickness, and intracranial length were measured. Entry angle of electrode to bone was calculated using stereotactic coordinates. A stepwise linear regression model was used to test for variables that significantly influenced placement error.RESULTSBetween 8 and 17 electrodes (median 10 electrodes) were placed per patient. Median target point localization error was 4.5 mm (interquartile range [IQR] 2.8–6.1 mm) for ON and 1.07 mm (IQR 0.71–1.59) for RA placement. Median entry point localization error was 5.5 mm (IQR 4.0–6.4) for ON and 0.71 mm (IQR 0.47–1.03) for RA placement. The difference in accuracy between Stealth-guided (ON) and RA placement was highly significant for both cortical entry point and target (p < 0.0001 for both). Increased soft-tissue thickness and intracranial length reduced accuracy at the target. Increased soft-tissue thickness, bone thickness, and younger age reduced accuracy at entry. There were no complications.CONCLUSIONSRA stereotactic electrode placement is highly accurate and is significantly more accurate than ON. Larger safety margins away from vascular structures should be used when placing deep electrodes in young children and for trajectories that pass through thicker soft tissues such as the temporal region.


Neurosurgery ◽  
2012 ◽  
Vol 72 (3) ◽  
pp. 353-366 ◽  
Author(s):  
Francesco Cardinale ◽  
Massimo Cossu ◽  
Laura Castana ◽  
Giuseppe Casaceli ◽  
Marco Paolo Schiariti ◽  
...  

Abstract BACKGROUND: Stereoelectroencephalography (SEEG) methodology, originally developed by Talairach and Bancaud, is progressively gaining popularity for the presurgical invasive evaluation of drug-resistant epilepsies. OBJECTIVE: To describe recent SEEG methodological implementations carried out in our center, to evaluate safety, and to analyze in vivo application accuracy in a consecutive series of 500 procedures with a total of 6496 implanted electrodes. METHODS: Four hundred nineteen procedures were performed with the traditional 2-step surgical workflow, which was modified for the subsequent 81 procedures. The new workflow entailed acquisition of brain 3-dimensional angiography and magnetic resonance imaging in frameless and markerless conditions, advanced multimodal planning, and robot-assisted implantation. Quantitative analysis for in vivo entry point and target point localization error was performed on a sub-data set of 118 procedures (1567 electrodes). RESULTS: The methodology allowed successful implantation in all cases. Major complication rate was 12 of 500 (2.4%), including 1 death for indirect morbidity. Median entry point localization error was 1.43 mm (interquartile range, 0.91-2.21 mm) with the traditional workflow and 0.78 mm (interquartile range, 0.49-1.08 mm) with the new one (P &lt; 2.2 × 10−16). Median target point localization errors were 2.69 mm (interquartile range, 1.89-3.67 mm) and 1.77 mm (interquartile range, 1.25-2.51 mm; P &lt; 2.2 × 10−16), respectively. CONCLUSION: SEEG is a safe and accurate procedure for the invasive assessment of the epileptogenic zone. Traditional Talairach methodology, implemented by multimodal planning and robot-assisted surgery, allows direct electrical recording from superficial and deep-seated brain structures, providing essential information in the most complex cases of drug-resistant epilepsy.


Author(s):  
Constantin Pistol ◽  
Andrei Daneasa ◽  
Jean Ciurea ◽  
Alin Rasina ◽  
Andrei Barborica ◽  
...  

Stereoelectroencephalography (SEEG) in children with intractable epilepsy presents particular challenges. Their thin and partially ossified cranium, specifically in the temporal area, is prone to fracture while attaching stereotactic systems to the head or stabilizing the head in robot’s field of action. Postponing SEEG in this special population of patients can have serious consequences, reducing their chances of becoming seizure-free and impacting their social and cognitive development. This study demonstrates the safety and accuracy offered by a frameless personalized 3D printed stereotactic implantation system for SEEG investigations in children under 4 years of age. SEEG was carried out in a 3-year-old patient with drug-resistant focal epilepsy, based on a right temporal-perisylvian epileptogenic zone hypothesis. Fifteen intracerebral electrodes were placed using a StarFix patient-customized stereotactic fixture. The median lateral entry point localization error of the electrodes was 0.90 mm, median lateral target point localization error was 1.86 mm, median target depth error was 0.83 mm, and median target point localization error was 1.96 mm. There were no perioperative complications. SEEG data led to a tailored right temporal-insular-opercular resection, with resulting seizure freedom (Engel IA). In conclusion, patient-customized stereotactic fixtures are a safe and accurate option for SEEG exploration in young children.


Author(s):  
Karl Roessler ◽  
Fabian Winter ◽  
Tobias Wilken ◽  
Ekaterina Pataraia ◽  
Magdalena Mueller-Gerbl ◽  
...  

Abstract Objective Depth electrode implantation for invasive monitoring in epilepsy surgery has become a standard procedure. We describe a new frameless stereotactic intervention using robot-guided laser beam for making precise bone channels for depth electrode placement. Methods A laboratory investigation on a head cadaver specimen was performed using a CT scan planning of depth electrodes in various positions. Precise bone channels were made by a navigated robot-driven laser beam (erbium:yttrium aluminum garnet [Er:YAG], 2.94-μm wavelength,) instead of twist drill holes. Entry point and target point precision was calculated using postimplantation CT scans and comparison to the preoperative trajectory plan. Results Frontal, parietal, and occipital bone channels for bolt implantation were made. The occipital bone channel had an angulation of more than 60 degrees to the surface. Bolts and depth electrodes were implanted solely guided by the trajectory given by the precise bone channels. The mean depth electrode length was 45.5 mm. Entry point deviation was 0.73 mm (±0.66 mm SD) and target point deviation was 2.0 mm (±0.64 mm SD). Bone channel laser time was ∼30 seconds per channel. Altogether, the implantation time was ∼10 to 15 minutes per electrode. Conclusion Navigated robot-assisted laser for making precise bone channels for depth electrode implantation in epilepsy surgery is a promising new, exact and straightforward implantation technique and may have many advantages over twist drill hole implantation.


Author(s):  
Holger Joswig ◽  
David A. Steven ◽  
Andrew G. Parrent ◽  
Keith W. MacDougall ◽  
Seyed M. Mirsattari ◽  
...  

AbstractAt the London Health Sciences Centre Epilepsy Program, stereotactically implanted depth electrodes have largely replaced subdural electrodes in the presurgical investigation of patients with drug-resistant epilepsy over the past 4 years. The rationale for this paradigm shift was more experience with, and improved surgical techniques for, stereoelectroencephalography, a possible lower-risk profile for depth electrodes, better patient tolerability, shorter operative time, as well as increased recognition of potential surgical targets that are not accessible to subdural electrodes.


2019 ◽  
Vol 23 (3) ◽  
pp. 274-284 ◽  
Author(s):  
Han Yan ◽  
Eric Toyota ◽  
Melanie Anderson ◽  
Taylor J. Abel ◽  
Elizabeth Donner ◽  
...  

OBJECTIVEDrug-resistant epilepsy (DRE) presents a therapeutic challenge in children, necessitating the consideration of multiple treatment options. Although deep brain stimulation (DBS) has been studied in adults with DRE, little evidence is available to guide clinicians regarding the application of this potentially valuable tool in children. Here, the authors present the first systematic review aimed at understanding the safety and efficacy of DBS for DRE in pediatric populations, emphasizing patient selection, device placement and programming, and seizure outcomes.METHODSThe systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations. Relevant articles were identified from 3 electronic databases (MEDLINE, Embase, and Cochrane CENTRAL) from their inception to November 17, 2017. Inclusion criteria of individual studies were 1) diagnosis of DRE; 2) treatment with DBS; 3) inclusion of at least 1 pediatric patient (age ≤ 18 years); and 4) patient-specific data. Exclusion criteria for the systematic review included 1) missing data for age, DBS target, or seizure freedom; 2) nonhuman subjects; and 3) editorials, abstracts, review articles, and dissertations.RESULTSThis review identified 21 studies and 40 unique pediatric patients (ages 4–18 years) who received DBS treatment for epilepsy. There were 18 patients with electrodes placed in the bilateral or unilateral centromedian nucleus of the thalamus (CM) electrodes, 8 patients with bilateral anterior thalamic nucleus (ATN) electrodes, 5 patients with bilateral and unilateral hippocampal electrodes, 3 patients with bilateral subthalamic nucleus (STN) and 1 patient with unilateral STN electrodes, 2 patients with bilateral posteromedial hypothalamus electrodes, 2 patients with unilateral mammillothalamic tract electrodes, and 1 patient with caudal zona incerta electrode placement. Overall, 5 of the 40 (12.5%) patients had an International League Against Epilepsy class I (i.e., seizure-free) outcome, and 34 of the 40 (85%) patients had seizure reduction with DBS stimulation.CONCLUSIONSDBS is an alternative or adjuvant treatment for children with DRE. Prospective registries and future clinical trials are needed to identify the optimal DBS target, although favorable outcomes are reported with both CM and ATN in children.


2020 ◽  
Author(s):  
Tak Lap Poon

Drug-resistant epilepsy (DRE) is defined as failure of two adequate trials of appropriately chosen and administered antiepileptic drugs. Approximately about 30% of epilepsy patients are drug resistant. Accountable reasons to treatment failure including failure to recognize epilepsy syndrome, poor drug compliance, lifestyle factors, etc. In modern era of medicine, DRE patient should be encouraged to have early referral to tertiary epilepsy centre for presurgical evaluation. Comprehensive neurophysiology, structural neuroimaging, and neuropsychological and psychiatric assessment are regarded as essential elements. Invasive electroencephalography (EEG) monitoring in terms of subdural electrodes, depth electrodes, foramen ovale electrodes, and more advanced technique using stereoelectroencephalography (SEEG) are strong armamentarium for epilepsy surgeon. Epilepsy surgery in terms of resection, disconnection, or neuro-modulation should be recommended after a multi-disciplinary agreement.


2012 ◽  
Vol 9 (3) ◽  
pp. 290-300 ◽  
Author(s):  
Massimo Cossu ◽  
Marco Schiariti ◽  
Stefano Francione ◽  
Dalila Fuschillo ◽  
Francesca Gozzo ◽  
...  

Object The authors report on the use of stereoelectroencephalography (stereo-EEG) in the presurgical electroclinical evaluation of infants and very young children with focal drug-resistant epilepsy. Methods Fifteen patients (9 girls and 6 boys, mean age 34.1 ± 7.3 months, range 21–45 months), potentially candidates to receive surgical treatment for their focal drug-resistant epilepsy, were evaluated using stereo-EEG recording for a detailed definition of the epileptogenic zone. Stereoelectroencephalography was indicated because neuroradiological (brain MRI) and video-EEG data failed to adequately localize the epileptogenic zone. Stereotactic placement of multicontact intracerebral electrodes was preceded by the acquisition of all pertinent anatomical information from structural and functional MRI and from brain angiography, enabling the accurate targeting of desired structures through avascular trajectories. Stereoelectroencephalography monitoring attempted to record habitual seizures; electrical stimulations were performed to induce seizures and for the functional mapping of eloquent areas. Stereoelectroencephalography-guided microsurgery, when indicated, pointed to removal of the epileptogenic zone and seizure control. Results Brain MRI revealed an anatomical lesion in 13 patients (lobar in 2 cases, multilobar or hemispheric in 11 cases) and was unremarkable in 2 patients. One patient underwent 2 stereo-EEG studies. The arrangement of the intracerebral electrodes was unilateral in all but 1 case. One patient died the day following electrode placement due to massive brain edema and profound hyponatremia of undetermined cause. In 8 cases intracerebral electrical stimulations allowed mapping of functionally critical areas; in 3 other cases that received purposeful placement of electrodes in presumably eloquent areas, no functional response was obtained. Of the 14 patients who completed stereo-EEG monitoring, 1 was excluded from surgery for multifocality of seizures and 13 underwent operations. Postoperatively, 2 patients exhibited an anticipated, permanent motor deficit, 3 experienced a transient motor deficit, and 2 experienced transient worsening of a preexisting motor deficit. Three patients developed a permanent homonymous hemianopia after posterior resections. Histological analysis revealed cortical malformations in 10 cases. Of the 10 patients with a postoperative follow-up of at least 12 months, 6 (60%) were seizure-free (Engel Class Ia), 2 (20%) experienced a significant reduction of seizures (Engel Class II), and 2 (20%) were unchanged (Engel Class IV). Conclusions The present study indicates that stereo-EEG plays a prominent role in the presurgical evaluation of focal epilepsies also in the first years of life and that it may offer a surgical option in particularly complex cases that would have scarcely benefitted from further medical treatment. Results of stereo-EEG–guided resective surgery were excellent, with 80% of patients exhibiting a substantial improvement in seizures. In consideration of the potentially life-threatening risks of major intracranial surgery in this specific age group, the authors recommend reserving stereo-EEG evaluations for infants with realistic chances of benefiting from surgery.


Sign in / Sign up

Export Citation Format

Share Document