scholarly journals IGF-1 Influences Gonadotropin-Releasing Hormone Regulation of Puberty

2021 ◽  
Author(s):  
William L. Dees ◽  
Jill K. Hiney ◽  
Vinod K. Srivastava

The pubertal process is initiated as a result of complex neuroendocrine interactions within the preoptic and hypothalamic regions of the brain. These interactions ultimately result in a timely increase in the secretion of gonadotropin-releasing hormone (GnRH). Researchers for years have believed that this increase is due to a diminished inhibitory tone which has applied a prepubertal brake on GnRH secretion, as well as to the gradual development of excitatory inputs driving the increased release of the peptide. Over the years, insulin-like growth factor -1 (IGF-1) has emerged as a prime candidate for playing an important role in the onset of puberty. This review will first present initial research demonstrating that IGF-1 increases in circulation as puberty approaches, is able to induce the release of prepubertal GnRH and can advance the timing of puberty. More recent findings depict an early action of IGF-1 to activate a pathway that releases the inhibitory brake on prepubertal GnRH secretion provided by dynorphin (DYN), as well as demonstrating that IGF-1 can also act later in the process to regulate the synthesis and release of kisspeptin (Kp), a potent stimulator of GnRH at puberty.

1994 ◽  
Vol 72 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Glenda M. Wright ◽  
Kim M. McBurney ◽  
John H. Youson ◽  
Stacia A. Sower

Lamprey gonadotropin-releasing hormone was demonstrated in the brains of larval, metamorphic, and adult sea lampreys, Petromyzon marinus, using an immunoperoxidase technique. Gonadotropin-releasing hormone was observed in the neurohypophysis and preoptic area of the brain of larval, metamorphic, juvenile, and prespawning adults. The occurrence of immunoreactive cells and the intensity of the immunostaining was lowest in larvae, but by stage 5 of metamorphosis there was a marked increase in the prevalence and staining of these cells, which continued into adults. In larvae and lampreys in metamorphic stages 1–4, most immunoreactive fibres were confined to the dorsal region of the neurohypophysis. During stage 5 there was an expansion of immunopositive fibres into the ventral portion of the neurohypophysis. Prominent immunoreactivity was observed throughout the neurohypophysis from stage 5 onward through the adult stages. Changes in immunoreactivity of these cells and fibres in the brain and neurohypophysis correlate well with increased concentrations of hormone in the brain during development and with the timing of presumed changes in activity of cells in the adenohypophysis during metamorphosis.


Endocrinology ◽  
1998 ◽  
Vol 139 (4) ◽  
pp. 2007-2014 ◽  
Author(s):  
I. J. Clarke ◽  
B. W. Brown ◽  
V. V. Tran ◽  
C. J. Scott ◽  
R. Fry ◽  
...  

Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 463-468 ◽  
Author(s):  
Elizabeth P. Bless ◽  
Heather J. Walker ◽  
Kwok W. Yu ◽  
J. Gabriel Knoll ◽  
Suzanne M. Moenter ◽  
...  

Neurons that synthesize GnRH control the reproductive axis and migrate over long distances and through different environments during development. Prior studies provided strong clues for the types of molecules encountered and movements expected along the migratory route. However, our studies provide the first real-time views of the behavior of GnRH neurons in the context of an in vitro preparation that maintains conditions comparable to those in vivo. The live views provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more changes in direction after they enter the brain. Perturbations of guiding fibers distal to moving GnRH neurons in the nasal compartment influenced movement without detectable changes in the fibers in the immediate vicinity of moving GnRH neurons. This suggests that the use of fibers by GnRH neurons for guidance may entail selective signaling in addition to mechanical guidance. These studies establish a model to evaluate the influences of specific molecules that are important for their migration.


Sign in / Sign up

Export Citation Format

Share Document