Fabrication and Characterization of Silk Fibroin-Based Nanofibrous Scaffolds Supplemented with Gelatin for Corneal Tissue Engineering

2021 ◽  
pp. 1-22
Author(s):  
Ajay Kumar Sahi ◽  
Neelima Varshney ◽  
Suruchi Poddar ◽  
Shravanya Gundu ◽  
Sanjeev Kumar Mahto

Tissue engineering is a promising approach to overcome the severe worldwide shortage of healthy donor corneas. In this work, we have developed a silk-gelatin composite scaffold using electrospinning and permeation techniques to achieve the properties comparable to cornea analog. In particular, we present the fabrication and comparative evaluation of the novel gelatin sheets consisting of silk fibroin nanofibers, which are prepared using silk fibroin (SF) (in formic acid) and SF (in aqueous) electrospun scaffolds, for its suitability as corneal stromal analogs. All the fabricated samples were treated with ethanol vapor (T) to physically crosslink the silk nanofibers. Micro/nano-scale features of the fabricated scaffolds were analyzed using scanning electron microscopy micrographs. Fourier transform infrared spectroscopy revealed characteristic peaks of polymeric functional groups and modifications upon ethanol vapor treatment. Transparency of the scaffolds was determined using UV-visible spectra. Among all the fabricated samples, the gelatin-permeated SF (in formic acid; T) scaffold showed the highest level of transparency, i.e., 77.75 ± 2.3%, which is similar to that of the native cornea (∼70%–90% [variable with age group]) with healthy acute vision. Contact angle of the samples was studied to estimate the hydrophilicity of the scaffolds. All the scaffolds except non-treated SF (in aqueous; NT) were found to be significantly stable up to 14 days when incubated in phosphate buffered saline at 37°C. Treated samples showed significantly better stability, both physically and microscopically, in comparison to nontreated samples. Proliferation and viability assays of rabbit corneal fibroblast cells (SIRC) and mouse fibroblast cells (L929 RFP) when cultured on fabricated scaffolds revealed remarkable cellular compatibility with gelatin-permeated SF (in formic acid; T) scaffolds compared to SF (in aqueous; T). Unlike other reports in the existing literature, this work presents the design and development of a nanofibrous silk-gelatin composite that exhibits acceptable transparency, cellular biocompatibility, as well as improved mechanical stability comparable to that of native cornea. Therefore, we anticipate that the fabricated novel scaffold is likely to be a good candidate for corneal tissue construct. Moreover, among the fabricated scaffolds, the outcomes depict gelatin-permeated SF (in formic acid; T) composite scaffold to be a better candidate as a corneal stromal analog that carries properties of both the silk and gelatin, i.e., optimal transparency, better stability, and enhanced cytocompatibility.

2013 ◽  
Vol 29 (10) ◽  
pp. e53-e55 ◽  
Author(s):  
Hélder Miguel Duarte Pereira ◽  
Joana Silva-Correia ◽  
Le-Ping Yan ◽  
Sofia G. Caridade ◽  
Ana M. Frias ◽  
...  

2020 ◽  
Vol 56 ◽  
pp. 101498 ◽  
Author(s):  
Narges Forouzideh ◽  
Samad Nadri ◽  
Ali Fattahi ◽  
Elaheh Dalir Abdolahinia ◽  
Mina Habibizadeh ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Sun ◽  
Tareef Hayat Khan ◽  
Naznin Sultana

Composite scaffolds based on biodegradable natural polymer and osteoconductive hydroxyapatite (HA) nanoparticles can be promising for a variety of tissue engineering (TE) applications. This study addressed the fabrication of three-dimensional (3D) porous composite scaffolds composed of HA and chitosan fabricated via thermally induced phase separation and freeze-drying technique. The scaffolds produced were subsequently characterized in terms of microstructure, porosity, and mechanical property.In vitrodegradation andin vitrobiological evaluation were also investigated. The scaffolds were highly porous and had interconnected pore structures. The pore sizes ranged from several microns to a few hundred microns. The incorporated HA nanoparticles were well mixed and physically coexisted with chitosan in composite scaffold structures. The addition of 10% (w/w) HA nanoparticles to chitosan enhanced the compressive mechanical properties of composite scaffold compared to pure chitosan scaffold.In vitrodegradation results in phosphate buffered saline (PBS) showed slower uptake properties of composite scaffolds. Moreover, the scaffolds showed positive response to mouse fibroblast L929 cells attachment. Overall, the findings suggest that HA/chitosan composite scaffolds could be suitable for TE applications.


2013 ◽  
Vol 796 ◽  
pp. 9-14 ◽  
Author(s):  
Cai Hong Lei ◽  
Xin Xing Feng ◽  
Ya Yang Xu ◽  
Yue Rong Li ◽  
Hai Lin Zhu ◽  
...  

Three-dimensional (3D) mesoporous bioactive glass (MBG) scaffolds were obtained by using the demineralized bone matrix (DBM) and P123 as co-templates through a dip-coating method followed by evaporation induced self-assembly (EISA) process. 3D mesoporous bioactive glass-silk fibroin (MBG/SF) composite scaffolds were prepared by immersing MBG scaffolds into SF solutions with different concentration. Transmission electron microscopy (TEM), field mission scanning electron microscope (FESEM), fourier transform infrared spectroscopy (FT-IR) and wide angle X-ray diffraction (WA-XRD) were used to analyze the inner pore structures, pore sizes, morphologies and composition of the scaffolds. The in vitro bioactivity of the scaffolds was evaluated by soaking in simulated body fluid (SBF). The results showed that the MBG and MBG/SF composite scaffolds with the interconnected macroporous network and mesoporous walls could be obtained by this method. In addition, both the MBG scaffolds and the MBG/SF composite scaffolds have excellent apatite-forming bioactivity. Therefore, this method provides a simple way to prepare scaffolds for bone tissue engineering.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Chuangjian Wang ◽  
Guolin Meng ◽  
Laquan Zhang ◽  
Zuo Xiong ◽  
Jian Liu

Scaffolds play a critical role in the practical realization of bone tissue engineering. The purpose of this study was to assess whether a core-sheath structure composite scaffold possesses admirable physical properties and biocompatibility in vitro. A novel scaffold composed of poly(lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) skeleton wrapped with Type I collagen via low-temperature deposition manufacturing (LDM) was prepared, and bone mesenchymal stem cells (BMSCs) were used to evaluate cell behavior on the scaffold. PLGA/β-TCP skeleton was chosen as the control group. Physical properties were evaluated by pority ratio, compressive strength, and Young’s modulus. Scanning electron microscope (SEM) was used to study morphology of cells. Hydrophilicity was evaluated by water absorption ratio. Cell proliferation was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT). Osteogenic differentiation of BMSCs was evaluated by alkaline phosphates activity (ALP). The results indicated that physical properties of the novel scaffold were as good as those of the control group, hydrophilicity was observably better (P<0.01) than that of control group, and abilities of proliferation and osteogenic differentiation of BMSCs on novel scaffold were significantly greater (P<0.05) than those of control group, which suggests that the novel scaffold possesses preferable characteristics and have high value in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document