scholarly journals A Review on Deep Learning Algorithms for Speech and Facial Emotion Recognition

Author(s):  
Charlyn Pushpa Latha ◽  
Mohana Priya

Deep Learning is the recent machine learning technique that tries to model high level abstractions in data by using multiple processing layers with complex structures. It is also known as deep structured learning, hierarchical learning or deep machine learning. The term “deep learning" indicates the method used in training multi-layered neural networks. Deep Learning technique has obtained remarkable success in the field of face recognition with 97.5% accuracy. Facial Electromyogram (FEMG) signals are used to detect the different emotions of humans. Some of the deep learning techniques discussed in this paper are Deep Boltzmann Machine (DBM), Deep Belief Networks (DBN), Convolutional Neural Networks (CNN) and Stacked Auto Encoders respectively. This paper focuses on the review of some of the deep learning techniques used by various researchers which paved the way to improve the classification accuracy of the FEMG signals as well as the speech signals.

2020 ◽  
Vol 1 (3) ◽  
pp. 92-108
Author(s):  
Charlyn Pushpa Latha ◽  
Mohana Priya

Deep Learning is the recent machine learning technique that tries to model high level abstractions in databy using multiple processing layers with complex structures. It is also known as deep structured learning,hierarchical learning or deep machine learning. The term “deep learning" indicates the method used in trainingmulti-layered neural networks. Deep Learning technique has obtained remarkable success in the field of facerecognition with 97.5% accuracy. Facial Electromyogram (FEMG) signals are used to detect the different emotionsof humans. Some of the deep learning techniques discussed in this paper are Deep Boltzmann Machine (DBM), DeepBelief Networks (DBN), Convolutional Neural Networks (CNN) and Stacked Auto Encoders respectively. This paperfocuses on the review of some of the deep learning techniques used by various researchers which paved the way toimprove the classification accuracy of the FEMG signals as well as the speech signals


2017 ◽  
Vol 10 (13) ◽  
pp. 489 ◽  
Author(s):  
Saheb Ghosh ◽  
Sathis Kumar B ◽  
Kathir Deivanai

Deep learning methods are a great machine learning technique which is mostly used in artificial neural networks for pattern recognition. This project is to identify the Whales from under water Bioacoustics network using an efficient algorithm and data model, so that location of the whales can be send to the Ships travelling in the same region in order to avoid collision with the whale or disturbing their natural habitat as much as possible. This paper shows application of unsupervised machine learning techniques with help of deep belief network and manual feature extraction model for better results.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


Scientific Knowledge and Electronic devices are growing day by day. In this aspect, many expert systems are involved in the healthcare industry using machine learning algorithms. Deep neural networks beat the machine learning techniques and often take raw data i.e., unrefined data to calculate the target output. Deep learning or feature learning is used to focus on features which is very important and gives a complete understanding of the model generated. Existing methodology used data mining technique like rule based classification algorithm and machine learning algorithm like hybrid logistic regression algorithm to preprocess data and extract meaningful insights of data. This is, however a supervised data. The proposed work is based on unsupervised data that is there is no labelled data and deep neural techniques is deployed to get the target output. Machine learning algorithms are compared with proposed deep learning techniques using TensorFlow and Keras in the aspect of accuracy. Deep learning methodology outfits the existing rule based classification and hybrid logistic regression algorithm in terms of accuracy. The designed methodology is tested on the public MIT-BIH arrhythmia database, classifying four kinds of abnormal beats. The proposed approach based on deep learning technique offered a better performance, improving the results when compared to machine learning approaches of the state-of-the-art


In order to take notes of the speech delivered by the VIPs in the short time short hand language is employed. Mainly there are two shorthand languages namely Pitman and Teeline. An automatic shorthand language recognition system is essential in order to make use of the handheld devices for speedy conversion to the original text. The paper addresses and compares the recognition of the Teeline alphabets using the Machine learning (SVM and KNN) and deep learning (CNN) techniques. The dataset has been prepared using the digital pen and the same is processed and stored using the android application. The prepared dataset is fed to the proposed system and accuracy of recognition is compared. Deep learning technique gave higher accuracy compared to machine learning techniques. MATLAB 2018b platform is used for implementation of the experimental setup.


Author(s):  
N. Lakshmi Prasanna ◽  
Sk. Sohal Rehman ◽  
V. Naga Phani ◽  
S. Koteswara Rao ◽  
T. Ram Santosh

Automatic Colorization helps to hallucinate what an input gray scale image would look like when colorized. Automatic coloring makes it look and feel better than Grayscale. One of the most important technologies used in Machine learning is Deep Learning. Deep learning is nothing but to train the computer with certain algorithms which imitates the working of the human brain. Some of the areas in which it is used are medical, Industrial Automation, Electronics etc. The main objective of this project is coloring Grayscale images. We have umbrellaed the concepts of convolutional neural networks along with the use of the Opencv library in Python to construct our desired model. A user interface has also been fabricated to get personalized inputs using PIL. The user had to give details about boundaries, what colors to put, etc. Colorization requires considerable user intervention and remains a tedious, time consuming, and expensive task. So, in this paper we try to build a model to colorize the grayscale images automatically by using some modern deep learning techniques. In colorization task, the model needs to find characteristics to map grayscale images with colored ones.


2017 ◽  
Vol 1 (3) ◽  
pp. 83 ◽  
Author(s):  
Chandrasegar Thirumalai ◽  
Ravisankar Koppuravuri

In this paper, we will use deep neural networks for predicting the bike sharing usage based on previous years usage data. We will use because deep neural nets for getting higher accuracy. Deep neural nets are quite different from other machine learning techniques; here we can add many numbers of hidden layers to improve the accuracy of our prediction and the model can be trained in the way we want such that we can achieve the results we want. Nowadays many AI experts will say that deep learning is the best AI technique available now and we can achieve some unbelievable results using this technique. Now we will use that technique to predict bike sharing usage of a rental company to make sure they can take good business decisions based on previous years data.


2016 ◽  
Vol 10 (03) ◽  
pp. 417-439 ◽  
Author(s):  
Xing Hao ◽  
Guigang Zhang ◽  
Shang Ma

Deep learning is a branch of machine learning that tries to model high-level abstractions of data using multiple layers of neurons consisting of complex structures or non-liner transformations. With the increase of the amount of data and the power of computation, neural networks with more complex structures have attracted widespread attention and been applied to various fields. This paper provides an overview of deep learning in neural networks including popular architecture models and training algorithms.


2021 ◽  
pp. 43-53
Author(s):  
admin admin ◽  
◽  
◽  
Adnan Mohsin Abdulazeez

Due to many new medical uses, the value of ECG classification is very demanding. There are some Machine Learning (ML) algorithms currently available that can be used for ECG data processing and classification. The key limitations of these ML studies, however, are the use of heuristic hand-crafted or engineered characteristics of shallow learning architectures. The difficulty lies in the probability of not having the most suitable functionality that will provide this ECG problem with good classification accuracy. One choice suggested is to use deep learning algorithms in which the first layer of CNN acts as a feature. This paper summarizes some of the key approaches of ECG classification in machine learning, assessing them in terms of the characteristics they use, the precision of classification important physiological keys ECG biomarkers derived from machine learning techniques, and statistical modeling and supported simulation.


Author(s):  
Myeong Sang Yu

The revolutionary development of artificial intelligence (AI) such as machine learning and deep learning have been one of the most important technology in many parts of industry, and also enhance huge changes in health care. The big data obtained from electrical medical records and digitalized images accelerated the application of AI technologies in medical fields. Machine learning techniques can deal with the complexity of big data which is difficult to apply traditional statistics. Recently, the deep learning techniques including convolutional neural network have been considered as a promising machine learning technique in medical imaging applications. In the era of precision medicine, otolaryngologists need to understand the potentialities, pitfalls and limitations of AI technology, and try to find opportunities to collaborate with data scientists. This article briefly introduce the basic concepts of machine learning and its techniques, and reviewed the current works on machine learning applications in the field of otolaryngology and rhinology.


Sign in / Sign up

Export Citation Format

Share Document