Train Deep Learning Models using subsurface geological images datasets

Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lara Lloret Iglesias ◽  
Pablo Sanz Bellón ◽  
Amaia Pérez del Barrio ◽  
Pablo Menéndez Fernández-Miranda ◽  
David Rodríguez González ◽  
...  

AbstractDeep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.


2021 ◽  
Author(s):  
Amit Kumar Srivast ◽  
Nima Safaei ◽  
Saeed Khaki ◽  
Gina Lopez ◽  
Wenzhi Zeng ◽  
...  

Abstract Crop yield forecasting depends on many interactive factors including crop genotype, weather, soil, and management practices. This study analyzes the performance of machine learning and deep learning methods for winter wheat yield prediction using extensive datasets of weather, soil, and crop phenology. We propose a convolutional neural network (CNN) which uses the 1-dimentional convolution operation to capture the time dependencies of environmental variables. The proposed CNN, evaluated along with other machine learning models for winter wheat yield prediction in Germany, outperformed all other models tested. To address the seasonality, weekly features were used that explicitly take soil moisture and meteorological events into account. Our results indicated that nonlinear models such as deep learning models and XGboost are more effective in finding the functional relationship between the crop yield and input data compared to linear models and deep neural networks had a higher prediction accuracy than XGboost. One of the main limitations of machine learning models is their black box property. Therefore, we moved beyond prediction and performed feature selection, as it provides key results towards explaining yield prediction (variable importance by time). As such, our study indicates which variables have the most significant effect on winter wheat yield.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
I Korsakov ◽  
A Gusev ◽  
T Kuznetsova ◽  
D Gavrilov ◽  
R Novitskiy

Abstract Abstract Background Advances in precision medicine will require an increasingly individualized prognostic evaluation of patients in order to provide the patient with appropriate therapy. The traditional statistical methods of predictive modeling, such as SCORE, PROCAM, and Framingham, according to the European guidelines for the prevention of cardiovascular disease, not adapted for all patients and require significant human involvement in the selection of predictive variables, transformation and imputation of variables. In ROC-analysis for prediction of significant cardiovascular disease (CVD), the areas under the curve for Framingham: 0.62–0.72, for SCORE: 0.66–0.73 and for PROCAM: 0.60–0.69. To improve it, we apply for approaches to predict a CVD event rely on conventional risk factors by machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR). Methods For machine learning, we applied logistic regression (LR) and recurrent neural networks with long short-term memory (LSTM) units as a deep learning algorithm. We extract from longitudinal EHR the following features: demographic, vital signs, diagnoses (ICD-10-cm: I21-I22.9: I61-I63.9) and medication. The problem in this step, that near 80 percent of clinical information in EHR is “unstructured” and contains errors and typos. Missing data are important for the correct training process using by deep learning & machine learning algorithm. The study cohort included patients between the ages of 21 to 75 with a dynamic observation window. In total, we got 31517 individuals in the dataset, but only 3652 individuals have all features or missing features values can be easy to impute. Among these 3652 individuals, 29.4% has a CVD, mean age 49.4 years, 68,2% female. Evaluation We randomly divided the dataset into a training and a test set with an 80/20 split. The LR was implemented with Python Scikit-Learn and the LSTM model was implemented with Keras using Tensorflow as the backend. Results We applied machine learning and deep learning models using the same features as traditional risk scale and longitudinal EHR features for CVD prediction, respectively. Machine learning model (LR) achieved an AUROC of 0.74–0.76 and deep learning (LSTM) 0.75–0.76. By using features from EHR logistic regression and deep learning models improved the AUROC to 0.78–0.79. Conclusion The machine learning models outperformed a traditional clinically-used predictive model for CVD risk prediction (i.e. SCORE, PROCAM, and Framingham equations). This approach was used to create a clinical decision support system (CDSS). It uses both traditional risk scales and models based on neural networks. Especially important is the fact that the system can calculate the risks of cardiovascular disease automatically and recalculate immediately after adding new information to the EHR. The results are delivered to the user's personal account.


Author(s):  
S. Sasikala ◽  
S. J. Subhashini ◽  
P. Alli ◽  
J. Jane Rubel Angelina

Machine learning is a technique of parsing data, learning from that data, and then applying what has been learned to make informed decisions. Deep learning is actually a subset of machine learning. It technically is machine learning and functions in the same way, but it has different capabilities. The main difference between deep and machine learning is, machine learning models become well progressively, but the model still needs some guidance. If a machine learning model returns an inaccurate prediction, then the programmer needs to fix that problem explicitly, but in the case of deep learning, the model does it by itself. Automatic car driving system is a good example of deep learning. On other hand, Artificial Intelligence is a different thing from machine learning and deep learning. Deep learning and machine learning both are the subsets of AI.


2020 ◽  
Author(s):  
Mahdieh Montazeri ◽  
Roxana ZahediNasab ◽  
Ali Farahani ◽  
Hadis Mohseni ◽  
Fahimeh Ghasemian

BACKGROUND Accurate and timely diagnosis and effective prognosis of the disease is important to provide the best possible care for patients with COVID-19 and reduce the burden on the health care system. Machine learning methods can play a vital role in the diagnosis of COVID-19 by processing chest x-ray images. OBJECTIVE The aim of this study is to summarize information on the use of intelligent models for the diagnosis and prognosis of COVID-19 to help with early and timely diagnosis, minimize prolonged diagnosis, and improve overall health care. METHODS A systematic search of databases, including PubMed, Web of Science, IEEE, ProQuest, Scopus, bioRxiv, and medRxiv, was performed for COVID-19–related studies published up to May 24, 2020. This study was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. All original research articles describing the application of image processing for the prediction and diagnosis of COVID-19 were considered in the analysis. Two reviewers independently assessed the published papers to determine eligibility for inclusion in the analysis. Risk of bias was evaluated using the Prediction Model Risk of Bias Assessment Tool. RESULTS Of the 629 articles retrieved, 44 articles were included. We identified 4 prognosis models for calculating prediction of disease severity and estimation of confinement time for individual patients, and 40 diagnostic models for detecting COVID-19 from normal or other pneumonias. Most included studies used deep learning methods based on convolutional neural networks, which have been widely used as a classification algorithm. The most frequently reported predictors of prognosis in patients with COVID-19 included age, computed tomography data, gender, comorbidities, symptoms, and laboratory findings. Deep convolutional neural networks obtained better results compared with non–neural network–based methods. Moreover, all of the models were found to be at high risk of bias due to the lack of information about the study population, intended groups, and inappropriate reporting. CONCLUSIONS Machine learning models used for the diagnosis and prognosis of COVID-19 showed excellent discriminative performance. However, these models were at high risk of bias, because of various reasons such as inadequate information about study participants, randomization process, and the lack of external validation, which may have resulted in the optimistic reporting of these models. Hence, our findings do not recommend any of the current models to be used in practice for the diagnosis and prognosis of COVID-19.


2021 ◽  
Vol 6 (22) ◽  
pp. 36-50
Author(s):  
Ali Hassan ◽  
Riza Sulaiman ◽  
Mansoor Abdullateef Abdulgabber ◽  
Hasan Kahtan

Recent advances in artificial intelligence, particularly in the field of machine learning (ML), have shown that these models can be incredibly successful, producing encouraging results and leading to diverse applications. Despite the promise of artificial intelligence, without transparency of machine learning models, it is difficult for stakeholders to trust the results of such models, which can hinder successful adoption. This concern has sparked scientific interest and led to the development of transparency-supporting algorithms. Although studies have raised awareness of the need for explainable AI, the question of how to meet real users' needs for understanding AI remains unresolved. This study provides a review of the literature on human-centric Machine Learning and new approaches to user-centric explanations for deep learning models. We highlight the challenges and opportunities facing this area of research. The goal is for this review to serve as a resource for both researchers and practitioners. The study found that one of the most difficult aspects of implementing machine learning models is gaining the trust of end-users.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rami R. Hallac ◽  
Jeon Lee ◽  
Mark Pressler ◽  
James R. Seaward ◽  
Alex A. Kane

AbstractQuantifying ear deformity using linear measurements and mathematical modeling is difficult due to the ear’s complex shape. Machine learning techniques, such as convolutional neural networks (CNNs), are well-suited for this role. CNNs are deep learning methods capable of finding complex patterns from medical images, automatically building solution models capable of machine diagnosis. In this study, we applied CNN to automatically identify ear deformity from 2D photographs. Institutional review board (IRB) approval was obtained for this retrospective study to train and test the CNNs. Photographs of patients with and without ear deformity were obtained as standard of care in our photography studio. Profile photographs were obtained for one or both ears. A total of 671 profile pictures were used in this study including: 457 photographs of patients with ear deformity and 214 photographs of patients with normal ears. Photographs were cropped to the ear boundary and randomly divided into training (60%), validation (20%), and testing (20%) datasets. We modified the softmax classifier in the last layer in GoogLeNet, a deep CNN, to generate an ear deformity detection model in Matlab. All images were deemed of high quality and usable for training and testing. It took about 2 hours to train the system and the training accuracy reached almost 100%. The test accuracy was about 94.1%. We demonstrate that deep learning has a great potential in identifying ear deformity. These machine learning techniques hold the promise in being used in the future to evaluate treatment outcomes.


Healthcare ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 522
Author(s):  
Yassir Edrees Almalki ◽  
Abdul Qayyum ◽  
Muhammad Irfan ◽  
Noman Haider ◽  
Adam Glowacz ◽  
...  

The Coronavirus disease 2019 (COVID-19) is an infectious disease spreading rapidly and uncontrollably throughout the world. The critical challenge is the rapid detection of Coronavirus infected people. The available techniques being utilized are body-temperature measurement, along with anterior nasal swab analysis. However, taking nasal swabs and lab testing are complex, intrusive, and require many resources. Furthermore, the lack of test kits to meet the exceeding cases is also a major limitation. The current challenge is to develop some technology to non-intrusively detect the suspected Coronavirus patients through Artificial Intelligence (AI) techniques such as deep learning (DL). Another challenge to conduct the research on this area is the difficulty of obtaining the dataset due to a limited number of patients giving their consent to participate in the research study. Looking at the efficacy of AI in healthcare systems, it is a great challenge for the researchers to develop an AI algorithm that can help health professionals and government officials automatically identify and isolate people with Coronavirus symptoms. Hence, this paper proposes a novel method CoVIRNet (COVID Inception-ResNet model), which utilizes the chest X-rays to diagnose the COVID-19 patients automatically. The proposed algorithm has different inception residual blocks that cater to information by using different depths feature maps at different scales, with the various layers. The features are concatenated at each proposed classification block, using the average-pooling layer, and concatenated features are passed to the fully connected layer. The efficient proposed deep-learning blocks used different regularization techniques to minimize the overfitting due to the small COVID-19 dataset. The multiscale features are extracted at different levels of the proposed deep-learning model and then embedded into various machine-learning models to validate the combination of deep-learning and machine-learning models. The proposed CoVIR-Net model achieved 95.7% accuracy, and the CoVIR-Net feature extractor with random-forest classifier produced 97.29% accuracy, which is the highest, as compared to existing state-of-the-art deep-learning methods. The proposed model would be an automatic solution for the assessment and classification of COVID-19. We predict that the proposed method will demonstrate an outstanding performance as compared to the state-of-the-art techniques being used currently.


2021 ◽  
pp. PP. 18-50
Author(s):  
Ahmed A. Elngar ◽  
◽  
◽  
◽  
◽  
...  

Computer vision is one of the fields of computer science that is one of the most powerful and persuasive types of artificial intelligence. It is similar to the human vision system, as it enables computers to recognize and process objects in pictures and videos in the same way as humans do. Computer vision technology has rapidly evolved in many fields and contributed to solving many problems, as computer vision contributed to self-driving cars, and cars were able to understand their surroundings. The cameras record video from different angles around the car, then a computer vision system gets images from the video, and then processes the images in real-time to find roadside ends, detect other cars, and read traffic lights, pedestrians, and objects. Computer vision also contributed to facial recognition; this technology enables computers to match images of people’s faces to their identities. which these algorithms detect facial features in images and then compare them with databases. Computer vision also play important role in Healthcare, in which algorithms can help automate tasks such as detecting Breast cancer, finding symptoms in x-ray, cancerous moles in skin images, and MRI scans. Computer vision also contributed to many fields such as image classification, object discovery, motion recognition, subject tracking, and medicine. The rapid development of artificial intelligence is making machine learning more important in his field of research. Use algorithms to find out every bit of data and predict the outcome. This has become an important key to unlocking the door to AI. If we had looked to deep learning concept, we find deep learning is a subset of machine learning, algorithms inspired by structure and function of the human brain called artificial neural networks, learn from large amounts of data. Deep learning algorithm perform a task repeatedly, each time tweak it a little to improve the outcome. So, the development of computer vision was due to deep learning. Now we'll take a tour around the convolution neural networks, let us say that convolutional neural networks are one of the most powerful supervised deep learning models (abbreviated as CNN or ConvNet). This name ;convolutional ; is a token from a mathematical linear operation between matrixes called convolution. CNN structure can be used in a variety of real-world problems including, computer vision, image recognition, natural language processing (NLP), anomaly detection, video analysis, drug discovery, recommender systems, health risk assessment, and time-series forecasting. If we look at convolutional neural networks, we see that CNN are similar to normal neural networks, the only difference between CNN and ANN is that CNNs are used in the field of pattern recognition within images mainly. This allows us to encode the features of an image into the structure, making the network more suitable for image-focused tasks, with reducing the parameters required to set-up the model. One of the advantages of CNN that it has an excellent performance in machine learning problems. So, we will use CNN as a classifier for image classification. So, the objective of this paper is that we will talk in detail about image classification in the following sections.


2021 ◽  
Author(s):  
Larissa Asito ◽  
Hélcio Pereira ◽  
Marcello Nogueira-Barbosa ◽  
Renato Tinós

We propose a computer-aided diagnosis system based on convolutional neural networks (CNNs) for the identification of osteosarcoma on bone radiographs. The CNN should indicate regions of the image that may contain tumors. In order to indicate these regions on the image, we propose to split the image in windows and individually classify them by using a CNN. Techniques for pre-processing, such as window exclusion and labeling, are proposed. Two CNNs are compared in the proposed system. The first one is trained from scratch, while the second one is a pre-trained CNN (VGG16). The CNNs are compared to four machine learning models that use features extracted from the image windows as inputs: multilayer perceptron (MLP), decision tree, random forest, and MLP with feature selection. In the experiments, the best performance was obtained by the pre-trained CNN.


Sign in / Sign up

Export Citation Format

Share Document