scholarly journals Analysis of Teeline Shorthand Recognition using Machine Learning and Deep Learning Techniques.

In order to take notes of the speech delivered by the VIPs in the short time short hand language is employed. Mainly there are two shorthand languages namely Pitman and Teeline. An automatic shorthand language recognition system is essential in order to make use of the handheld devices for speedy conversion to the original text. The paper addresses and compares the recognition of the Teeline alphabets using the Machine learning (SVM and KNN) and deep learning (CNN) techniques. The dataset has been prepared using the digital pen and the same is processed and stored using the android application. The prepared dataset is fed to the proposed system and accuracy of recognition is compared. Deep learning technique gave higher accuracy compared to machine learning techniques. MATLAB 2018b platform is used for implementation of the experimental setup.

2017 ◽  
Vol 10 (13) ◽  
pp. 489 ◽  
Author(s):  
Saheb Ghosh ◽  
Sathis Kumar B ◽  
Kathir Deivanai

Deep learning methods are a great machine learning technique which is mostly used in artificial neural networks for pattern recognition. This project is to identify the Whales from under water Bioacoustics network using an efficient algorithm and data model, so that location of the whales can be send to the Ships travelling in the same region in order to avoid collision with the whale or disturbing their natural habitat as much as possible. This paper shows application of unsupervised machine learning techniques with help of deep belief network and manual feature extraction model for better results.


Author(s):  
Myeong Sang Yu

The revolutionary development of artificial intelligence (AI) such as machine learning and deep learning have been one of the most important technology in many parts of industry, and also enhance huge changes in health care. The big data obtained from electrical medical records and digitalized images accelerated the application of AI technologies in medical fields. Machine learning techniques can deal with the complexity of big data which is difficult to apply traditional statistics. Recently, the deep learning techniques including convolutional neural network have been considered as a promising machine learning technique in medical imaging applications. In the era of precision medicine, otolaryngologists need to understand the potentialities, pitfalls and limitations of AI technology, and try to find opportunities to collaborate with data scientists. This article briefly introduce the basic concepts of machine learning and its techniques, and reviewed the current works on machine learning applications in the field of otolaryngology and rhinology.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Gamal Tharwat ◽  
Abdelmoty M. Ahmed ◽  
Belgacem Bouallegue

In recent years, the role of pattern recognition in systems based on human computer interaction (HCI) has spread in terms of computer vision applications and machine learning, and one of the most important of these applications is to recognize the hand gestures used in dealing with deaf people, in particular to recognize the dashed letters in surahs of the Quran. In this paper, we suggest an Arabic Alphabet Sign Language Recognition System (AArSLRS) using the vision-based approach. The proposed system consists of four stages: the stage of data processing, preprocessing of data, feature extraction, and classification. The system deals with three types of datasets: data dealing with bare hands and a dark background, data dealing with bare hands, but with a light background, and data dealing with hands wearing dark colored gloves. AArSLRS begins with obtaining an image of the alphabet gestures, then revealing the hand from the image and isolating it from the background using one of the proposed methods, after which the hand features are extracted according to the selection method used to extract them. Regarding the classification process in this system, we have used supervised learning techniques for the classification of 28-letter Arabic alphabet using 9240 images. We focused on the classification for 14 alphabetic letters that represent the first Quran surahs in the Quranic sign language (QSL). AArSLRS achieved an accuracy of 99.5% for the K-Nearest Neighbor (KNN) classifier.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2021 ◽  
Author(s):  
Ghazaala Yasmin ◽  
ASIT KUMAR DAS ◽  
Janmenjoy Nayak ◽  
S Vimal ◽  
Soumi Dutta

Abstract Speech is one of the most delicate medium through which gender of the speakers can easily be identified. Though the related research has shown very good progress in machine learning but recently, deep learning has imparted a very good research area to explore the deficiency of gender discrimination using traditional machine learning techniques. In deep learning techniques, the speech features are automatically generated by the reinforcement learning from the raw data which have more discriminating power than the human generated features. But in some practical situations like gender recognition, it is observed that combination of both types of features sometimes provides comparatively better performance. In the proposed work, we have initially extracted and selected some informative and precise acoustic features relevant to gender recognition using entropy based information theory and Rough Set Theory (RST). Next, the audio speech signals are directly fed into the deep neural network model consists of Convolution Neural Network (CNN) and Gated Recurrent Unit network (GRUN) for extracting features useful for gender recognition. The RST selects precise and informative features, CNN extracts the locally encoded important features, and GRUN reduces the vanishing gradient and exploding gradient problems. Finally, a hybrid gender recognition system is developed combining both generated feature vectors. The developed model has been tested with five bench mark and a simulated dataset to evaluate its performance and it is observed that combined feature vector provides more effective gender recognition system specially when transgender is considered as a gender type together with male and female.


Sign in / Sign up

Export Citation Format

Share Document