scholarly journals Control of Liquid Sloshing Container Using Active Force Control Method

Author(s):  
Didik Setyo Purnomo ◽  
Adnan Rachmad Anom Besari ◽  
Zaqiatud Darojah
Author(s):  
Didik Setyo Purnomo ◽  
Adnan Rachmad Anom Besari ◽  
Zaqiatud Darojah

2013 ◽  
Vol 465-466 ◽  
pp. 801-805
Author(s):  
Rosmazi Rosli ◽  
Musa Mailah ◽  
Gigih Priyandoko

The paper focuses on the practical implementation of a novel control method to an automotive suspension system using active force control (AFC) with iterative learning algorithm (ILA) and proportional-integral-derivative (PID) control strategy. The overall control system to be known as AFC-IL scheme essentially comprises three feedback control loops to cater for a number of specific tasks, namely, the innermost loop for the force tracking of the pneumatic actuator using PI controller, intermediate loops applying AFC with ILA strategy for the compensation of the disturbances and the outermost loop using PID controller for the computation of the desired force. A number of experiments were carried out on a physical test rig with hardware-in-the-loop simulation (HILS) feature that fully incorporates the theoretical elements. The performance of the proposed control method was evaluated and benchmarked to examine the effectiveness of the system in suppressing the vibration effect of the suspension system. It was found that the experimental results demonstrate the superiority of the active suspension system with proposed AFC-IL scheme compared to the PID and passive counterparts.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xinjian Niu ◽  
Chifu Yang ◽  
Bowen Tian ◽  
Xiang Li ◽  
Junwei Han

According to the parallel mechanism theory, this paper proposes a novel intelligent robotic spine brace for the treatment of scoliosis. Nevertheless, this type of parallel mechanism has the following disadvantages: strong dynamic coupling in task space or joint space, adverse effect of system’s gravity, and lower response frequency in roll and pitch orientations, which seriously affect the performance of the system. In order to solve those boring problems, this paper presents a novel active force control structure, modal space dynamic feed-forward (MSDF) force control strategy. Besides, this paper expresses the intelligent robotic brace system model including the dynamic and kinematic models and the electric actuator model with Kane strategy. The stability of the intelligent system with the novel control strategy is proved. In order to evaluate the performance of the presented MSDF force control method, this paper builds the parallel mechanism experimental platform. It can be seen from experimental results that the proposed motion control method solves these boring problems well.


1970 ◽  
Vol 3 (1) ◽  
Author(s):  
Endra Pitowarno, Musa Mailah, Hishamuddin Jamaluddin

The active force control (AFC) method is known as a robust control scheme that dramatically enhances the performance of a robot arm particularly in compensating the disturbance effects. The main task of the AFC method is to estimate the inertia matrix in the feedback loop to provide the correct (motor) torque required to cancel out these disturbances. Several intelligent control schemes have already been introduced to enhance the estimation methods of acquiring the inertia matrix such as those using neural network, iterative learning and fuzzy logic. In this paper, we propose an alternative scheme called Knowledge-Based Trajectory Error Pattern Method (KBTEPM) to suppress the trajectory track error of the AFC scheme. The knowledge is developed from the trajectory track error characteristic based on the previous experimental results of the crude approximation method. It produces a unique, new and desirable error pattern when a trajectory command is forced. An experimental study was performed using simulation work on the AFC scheme with KBTEPM applied to a two-planar manipulator in which a set of rule-based algorithm is derived. A number of previous AFC schemes are also reviewed as benchmark. The simulation results show that the AFC-KBTEPM scheme successfully reduces the trajectory track error significantly even in the presence of the introduced disturbances.Key Words:  Active force control, estimated inertia matrix, robot arm, trajectory error pattern, knowledge-based.


Author(s):  
Musa Mailah ◽  
Miaw Yong Ong

Kawalan jitu dan lasak bagi satu sistem lengan robot atau pengolah adalah amat penting terutama sekali jika sistem mengalami pelbagai bentuk bebanan dan keadaan pengendalian. Kertas kerja ini memaparkan satu kaedah baru dan lasak untuk mengawal lengan robot menggunakan teknik pembelajaran secara berlelaran yang dimuatkan dalam strategi kawalan daya aktif. Sebanyak dua algoritma pembelajaran utama digunakan dalam kajian – yang pertama digunakan untuk menala gandaan pengawal secara automatik manakala yang satu lagi pula untuk menganggarkan matriks inersia pengolah. Kedua-dua parameter ini dihasilkan secara adaptif dan dalam talian ketika robot sedang menjalankan tugas menjejak trajektori dalam persekitaran tindakan daya gangguan. Dalam kajian ini, pengetahuan awal tentang kedua–dua nilai gandaan pengawal dan anggaran matriks inersia tidak wujud. Dengan demikian, suatu skema kawalan yang jitu dan lasak terhasil. Keberkesanan kaedah yang dicadangkan dapat ditentusahkan melalui hasil kajian yang diperoleh dan dibentangkan dalam kertas kerja ini. Kata kunci: Adaptif; kawalan daya aktif; pembelajaran berlelaran; matriks inersia; gandaan pengawal The robust and accurate control of a robotic arm or manipulator are of prime importance especially if the system is subjected to varying forms of loading and operating conditions. The paper highlights a novel and robust method to control a robotic arm using an iterative learning technique embedded in an active force control strategy. Two main iterative learning algorithms are utilized in the study – the first is used to automatically tune the controller gains while the second to estimate the inertia matrix of the manipulator. These parameters are adaptively computed on-line while the robot is executing a trajectory tracking task and subject to some forms of external disturbances. No priori knowledge of both the controller gains and the estimated inertia matrix are ever assumed in the study. In this way, an adaptive and robust control scheme is derived. The effectiveness of the method is verified and can be seen from the results of the work presented in this paper. Keywords: Adaptive; active force control; iterative learning; inertia matrix; controller gain


Sign in / Sign up

Export Citation Format

Share Document