scholarly journals VHDL design and FPGA implementation of direct torque control for induction machines

2021 ◽  
Vol 10 (3) ◽  
pp. 1220-1231
Author(s):  
Elhabib Lotfi ◽  
Mustapha Elharoussi ◽  
Elhassane Abdelmounim

This paper presents a VHDL design and an FPGA implementation of a direct torque controller (DTC) used to order induction machines (IM). The use of FPGA at high sampling frequency reduces the torque ripple while maintaining the classical DTC control structure. We have adopted a modular approach, by dividing the global entity into a set of elementary blocks designed and implemented separately. The performances of this command are to reduce the torque ripple to 0.01 Nm and the flux ripple to 0.01 wb with a circuit implementing DTC control of 3,256 LEs of complexity and 64 latency clock cycles. To evaluate the performance of our FPGA circuit implementing DTC controller, we have performed a co-simulation platform based on MATLAB/Simulink and Modelsim programs. MATLAB/Simulink was used to simulate the dynamics of the induction machine associated with its inverter and the proposed DTC control strategy was executed under the modelsim software using the VHDL fixed point. We have operated our circuit FPGA in the loop in a speed variation platform of induction machine and we have obtained the following performances: A zero overrun, response time at speeds of 300 ms and a zero static error as required in the specifications. 

Author(s):  
Sundram A/l Ramahlingam ◽  
Auzani Bin Jidin ◽  
Tole Sutikno ◽  
L. Logan Raj

This paper presents the advantage of using optimal PI parameter tuning strategy of constant switching method in the three phase Direct torque control (DTC) scheme. The DTC system is known to offer fast decoupled control of torque and flux via a simple control structure. Nevertheless, DTC system has two major drawbacks, which are the variable inverter switching frequency and high torque output ripple. The major factorthat contributes to these problems the usage of hysteresis based comparators to control the output torque. The implementation of PI based constant switching method in DTC able to solve these problems while retaining the simple control structure of conventional DTC. The combination usage of 3-level CHMI in this system can further minimize the output torque ripple by providing greater number of vectors. This paper presents detail explanation and calculationof optimal PI parameter tuning strategyconsecutively to enhance the performance of 3-level DTC system. In order to validate the feasibility, the proposed method compared with convention DTC system via simulation and experiment results.


2011 ◽  
Vol 367 ◽  
pp. 89-96
Author(s):  
U. Zangina ◽  
H.N. Yahaya ◽  
M. Aminu ◽  
Z.O. Niyi

Direct Torque Control (DTC) has emerged over the last two decades as a suitable alternative to the well-known Field Oriented Control (FOC) or vector control technique for electric drives mainly due to its simple control scheme, low computational time and reduced parameter sensitivity. In this paper, speed control of an induction machine based on DTC strategy has been developed and a comprehensive study is presented. The performance of the control method has been demonstrated by simulations using the Matlab/Simulink software package. Several numerical simulations have been carried out in steady state and transient operations.


2013 ◽  
Vol 9 (3) ◽  
pp. 1280-1290 ◽  
Author(s):  
Tole Sutikno ◽  
N. R. N. Idris ◽  
Auzani Jidin ◽  
Marcian N. Cirstea

Author(s):  
Muhd Zharif Rifqi Zuber Ahmadi ◽  
Auzani Jidin ◽  
Maaspaliza Azri ◽  
Khairi Rahim ◽  
Tole Sutikno

This paper presents the significant improvement of Direct Torque Control (DTC) of 3-phases induction machine using a Cascaded H-Bidge Multilevel Inverter (CHMI). The largest torque ripple and variable switching frequency are known as the major problem founded in DTC of induction motor. As a result, it can diminish the performance induction motor control. Therefore, the conventional 2-level inverter has been replaced with CHMI the in order to increase the performance of the motor either in dynamic or steady-state condition. By using the multilevel inverter, it can produce a more selection of the voltage vectors. Besides that, it can minimize the torque ripple output as well as increase the efficiency by reducing the switching frequency of the inverter. The simulation model of the proposed method has been developed and tested by using Matlab software. Its improvements were also verified via experimental results.


Author(s):  
Sundram Ramahlingam ◽  
Auzani Jidin ◽  
Tole Sutikno

<p>This paper presents a novel method of optimal Propotional-Intergral (PI) controller’s parameter tuning strategy in-order to improve the Constant Switching Performance of 3-phase DTC shceme. The Direct Torque Control (DTC) sheme is acknowledged to provide fast decoupled control over the torque output and stator flux via a simple control structure. However, DTC sheme has two major downsides, which are the inconsistent inverter switching frequency and high torque output ripple. The main reason that contributes to these tribulations is the usage of hysteresis comparators in order to control the output torque. The realization of PI based controller method as replacement of hyterisis controller in DTC system able to provide significant solutions to over come the fall back while retaining the simple control structure of conventional DTC. The combination usage of higher sampling controller DS1004 and also 3-level CHMI in this system can further minimize the output torque ripple by providing higher resolution with lower digital error and greater number of vectors. This paper presents detail explanation and calculation of optimal PI parameter tuning strategy consecutively to enhance the performance of 3-level DTC system. In order to verify the feasibility of the proposed method experimentation, the proposed method is compared with convention DTC system via simulation and experiment results.</p>


Author(s):  
Auzani Jidin ◽  
New Lai Sim ◽  
Tole Sutikno

A control strategy for overmodulation operation of direct torque control hysteresis based in induction machine is proposed. The strategy is to extend the constant torque region as well as to improve the torque capability. The proposed overmodulation strategy is different to SVM based system where the reference stator voltage is available. In order for DTC hysteresis based system to be able to achieve that, several modifications have been applied so that the proposed overmodulation can be achieved by gradually transforming the PWM voltage waveform to six-step mode. Simulated results were provided to demonstrate the effectiveness of the strategy.


2014 ◽  
Vol 11 (1) ◽  
pp. 159-173 ◽  
Author(s):  
Marko Rosic ◽  
Borislav Jeftenic ◽  
Milan Bebic

This paper presents ? practical implementation of direct torque control (DTC) of an induction machine on MSK2812 DSP platform, and the analysis of possibilities for reduction of torque ripple. Basic theoretical background relating the DTC was primarily set and the obtained experimental results have been given. It is shown that the torque ripple can be reduced by adjusting the intensity of voltage vectors and by modification of hysteresis comparator, while the simplicity of the basic DTC algorithm has been maintained.


Sign in / Sign up

Export Citation Format

Share Document