scholarly journals Optimal distributed generation placement using artificial intelligence for improving active radial distribution system

2021 ◽  
Vol 10 (5) ◽  
pp. 2345-2354
Author(s):  
Fadhel A. Jumaa ◽  
Omar Muhammed Neda ◽  
Mustafa A. Mhawesh

There are several profits of distributed generator (DG) units which are believed for improving the safety of the distribution power grids. However, these profits can be maximized by ensuring optimum sizing and positioning of DG units because an arbitrary location of DG units may adversely affect and jeopardize power grids which could contribute to maximising of power loss and degradation of the voltage profile. Therefore, several approaches were suggested to ensure optimum position and size of DGs. The primary aim of this article is for establishing technique for optimum scheduling and operating of DG to lessen power loss, revamp voltage profile and overall network reliability. Artificial intelligence method called particle swarm optimization (PSO) is utilized for finding the best site and size of DG to lessen power loss and boost the voltage profile. In this paper, IEEE 33 distribution system is utilized to display applicability of PSO. The results of the PSO are compared with the results gotten by other methods in the literature. Finally, the results show that the PSO is superior than the other methods.

Author(s):  
S. Bhongade ◽  
Sachin Arya

The work presented in this paper is carried out with the objective of identifying the optimal location and size (Kvar ratings) of shunt capacitors to be placed in radial distribution system, to have overall economy considering the saving due to energy loss minimization. To achieve this objective, a two stage methodology is adopted in this paper. In the first stage, the base case load flow of uncompensated distribution system is carried out. On the basis of base case load flow solution, Nominal voltage magnitudes and Loss Sensitivity Factors are calculated and the weak buses are selected for capacitor placement.In the second stage, Particle Swarm Optimization (PSO) algorithm is used to identify the size of the capacitors to be placed at the selected buses for minimizing the power loss. The developed algorithm is tested for 10-bus, 34-bus and 85-bus Radial Distribution Systems. The results show that there has been an enhancement in voltage profile and reduction in power loss thus resulting in much annual saving.


At present the green environment plays a crucial part in fighting against the global warming. The Electric Vehicles which are eco-friendly provides the solution for these environmental issues which promotes low carbon emission. In the present scenario variation of the power flow and voltage profile at specific nodal junctions in a radial distribution system, when Electric Vehicle has been connected as a load is essential This paper shows the potential drop analysis on a distribution system with Electric Vehicle as a load. The results provide the total real power loss, total reactive power loss occurs in the radial test bus system and the voltage magnitude at nodes for an IEEE standard bus system. The Backward/Forward sweep method has been implemented on IEEE test bus radial distribution system. Various types of loads such as residential, commercial, and industrial with Electric Vehicles are considered for testing. The results indicate that a drop in voltage when Electric Vehicles has been integrated into the grid along with other consumers. The programming results has been compared with standard values and found to be satisfactory. Suggestions’ for improving the voltage profile had also included in this paper.


Author(s):  
Zulkiffli Abdul Hamid ◽  
Ismail Musirin ◽  
Ammar Yasier Azman ◽  
Muhammad Murtadha Othman

This paper proposes a method for distributed generation (DG) placement in distribution system for losses minimization and voltage profile improvement. An IEEE 33-bus radial distribution system is used as the test system for the placement of DG. To facilitate the sizing of DG capacity, a meta-heuristic algorithm known as Continuous Domain Ant Colony Optimization (ACO<sub>R</sub>) is implemented. The ACO<sub>R</sub> is a modified version of the traditional ACO which was developed specially for solving continuous domain optimization problem like sizing a set of variables. The objective of this paper is to determine the optimal size and location of DG for power loss minimization and voltage profile mitigation. Three case studies were conducted for the purpose of verification. It was observed that the proposed technique is able to give satisfactory results of real power loss and voltage profile at post-optimization condition. Experiment under various loadings of the test system further justifies the objective of the study.


2019 ◽  
Vol 8 (4) ◽  
pp. 3881-3888

: Inclusion of Distributed Generation in the power system facilitates many features like voltage profile correction, improvement of power factor, network reliability, loadability enhancement that improve the performance of the system. Vast increase in the energy requirements to cope up with emerging trends in the community, all types of loads like residential, commercial, Industrial etc demands network up gradation. The urgency of network restructuring may be differed by an appropriate deployment of Distributed Generation in the system. Whereas, it is found that improper allocation of DGs may also degrade the system performance due to increased power losses, declined voltage profile etc. Thus, now a day’s network operators are paying wide attention towards appropriate DG allocation. This paper introduces a Modified Transmission Parameters Method considering the loss minimization as a constraint, for Siting and Sizing the Distributed Generator (DG) for installation in Distribution System based on Two Port Transmission Equations. It demonstrates an implication of Distributed Generator in power system to attain the enhanced system loadability. It also analyses the number of buses swept up from the competition of being an optimal location for DG allocation. Thus, it can be said that the proposed method facilitates enhanced ability of the system to sustain load expansion without network upgrades along with evaluation reduced candidate locations for DG installation called as ‘Inapt Locations’.


Author(s):  
S. F. Mekhamer ◽  
R. H. Shehata ◽  
A. Y. Abdelaziz ◽  
M. A. Al-Gabalawy

In this paper, A novel modified optimization method was used to find the optimal location and size for placing distribution Static Compensator in the radial distribution test feeder in order to improve its performance by minimizing the total power losses of the test feeder, enhancing the voltage profile and reducing the costs. The modified grey wolf optimization algorithm is used for the first time to solve this kind of optimization problem. An objective function was developed to study the radial distribution system included total power loss of the system and costs due to power loss in system. The proposed method is applied to two different test distribution feeders (33 bus and 69 bus test systems) using different Dstatcom sizes and the acquired results were analyzed and compared to other recent optimization methods applied to the same test feeders to ensure the effectiveness of the used method and its superiority over other recent optimization mehods. The major findings from obtained results that the applied technique found the most minimized total power loss in system ,the best improved voltage profile and most reduction in costs due power loss compared to other methods .


2020 ◽  
Vol 8 (6) ◽  
pp. 2393-2398

The aim of reducing power loss, enhancing profile of voltage in a radial distribution system at which consumers are connected and also determining the ratings of power, optimal placement of Distributed generator. In this paper to resolve the drop in voltage profile by using network reconfiguration that gives possible switching possibilities with an efficient Cuckoo Search Algorithm (CSA) is discussed and Sensitivity analysis are carried out simultaneously for finding sizing and possible location of distributed generation. To confirm the usefulness of the discussed method it was conducted on radial distribution system of 33 bus connected by various load levels, the result shows that the discussed method is fast and efficient. However to meet power requirement and lack of transmission capabilities importance for DG is rapidly evolving in electrical systems. For reliability and stability for the power system best possible location of Distributed Generator is needed in distribution system. To overcome the shortcomings of mathematical optimization practices, soft computing algorithms have been actively introduced during the last decade.


Author(s):  
Biswas Babu Pokhrel ◽  
Ashish Shrestha ◽  
Sudip Phuyal ◽  
Shailendra Kumar Jha

This study attempts to identify the causes and possible solutions for voltage profile issues in the lower land of Nepal, and is specifically focused on Laukahi feeder, a radial distribution system with an approximate length of 65 km and distributed at 11KV system voltage. Currently, the end-users feeding through this feeder are getting extremely poor voltage along with frequent interruptions in the power supply. In this study, a forward/ backward sweep algorithm is used to analyze the load flow of the distribution system, whereas ant colony optimization (ACO) technique is used to identify the best location for the Distributed Generator (DG) penetrations. After completion of this study, it is found that, the branch loss of the feeder can be reduced up to 87.22%, and voltage profile can be improved from 0.828 pu to 0.982 pu by integrating some form of DGs.


2016 ◽  
Vol 17 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Neelakanteshwar Rao Battu ◽  
A. R. Abhyankar ◽  
Nilanjan Senroy

Abstract Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.


Sign in / Sign up

Export Citation Format

Share Document