Journal of Renewable Energy, Electrical, and Computer Engineering
Latest Publications


TOTAL DOCUMENTS

12
(FIVE YEARS 12)

H-INDEX

0
(FIVE YEARS 0)

Published By LPPM Universitas Malikussaleh

2776-0049

Author(s):  
Adi Syahputra Ritonga ◽  
Muchlis Abdul Muthalib ◽  
Muhammad Daud ◽  
Hamdi Akmal Lubis ◽  
Biswas Babu Pokhrel ◽  
...  

The reliability and stability of the system in the operation of the electric power system is very important, in order to provide comfort in service to consumers. The transformer is a very important component in the electric power system, because it is used as a voltage adjuster for the load being served. This study discusses the effect of loading and temperature on the life shrinkage of 36/60 MVA power transformers in block 3 and block 4 carried out at PT. PJB UBJ O&M PLTMG Arun Lhokseumawe, Aceh. From the calculation results after 4 years the transformer operates, if the transformer is given a 100% load, the transformer will experience an age difference of 2.52 p.u/day so that it has a remaining life for of 10 years. As for the transformer that is given a load of 90%, the transformer will experience an age difference of 1.44 p.u/day so that it has a remaining life to perform operations for another 18 years. Then for a transformer that is given a load of 80%, the transformer will experience an age difference of 0.67 p.u/day so that it will have a remaining life to carry out the operation again for another 38 years. From the above calculation, the origin of the temperature obtained for the ONAN type of cooler in block 3 is 0.71 p.u/day and in block 4 it is 0.70 p.u/day. While the ONAF type of cooler in block 3 is 0.004 p.u/day and in block 4 it is 0.005 p.u/day. This is in accordance with the regulation SPLN50/1982 regarding transformer life shrinkage.


Author(s):  
Rizky Rahmat Maulana ◽  
S Salahuddin ◽  
E Ezwarsyah ◽  
Baharuddin Ismail ◽  
Ashish Shrestha ◽  
...  

Energy loss (losses) is the loss of a certain amount of energy generated when it is distributed to consumers so that it affects the profitability of the company concerned. The size of the losses from an electric power system shows the level of efficiency of the system, the lower the percentage of losses that occur the more efficient the system. Energy losses in the distribution network are generally divided into two, namely technical and non-technical losses. The calculation of technical losses in the 20 KV medium distribution network of PT PLN (Persero) Ulp Matang Glumpang Dua is carried out using the load curve approach method and using the help of the Microsoft Exel program, while the technical losses calculated are technical losses on the Medium Voltage Network and Distribution Transformer. From the results of the analysis of the calculation of technical losses in 2020, the total technical loss value at MG-01 Matang City is in the range of 13.8% to 20.8% which consists of the average technical loss in the Medium Voltage Network feeder of 0.02%. and the loss of Distribution Transformer by 17.6%.


Author(s):  
Afif Arizaldi ◽  
S Salahuddin ◽  
M Muhammad ◽  
Vishal Jain ◽  
Govinda Prashad Pandey ◽  
...  

In an electric power system, electricity is generated by the power plant and then channeled to a transmission line and then distributed to consumers, in the process of distributing electrical energy, the system does not always work in normal conditions, sometimes the system can experience disturbances such as one-phase, two-phase, and three-phase disturbances. This interference can disrupt the electrical system and can damage equipment if left unchecked, therefore it is necessary to install a protection device that can decide the interference so as not to damage other equipment when a disturbance occurs. Here the protection device used is a circuit breaker. In a fault condition, the circuit breaker must be able to separate the points of the fault so as not to damage other electrical equipment. In this case, to determine the capacity of the best protection device for the system, a short circuit fault simulation is performed. To simplify the calculation process here the author uses the help of ETAP software (Electrical Transient Analysis Program).


Author(s):  
Raihan Putri ◽  
Endri Juliadi ◽  
Misbahul Jannah ◽  
Teti Zubaidah ◽  
D. R. Ramji ◽  
...  

PT. Semen Padang is one of the largest cement producers in western Indonesia, along with the development of the cement industry PT. Semen Padang added a new Indarung VI factory to support the production process to meet market demand. With the addition of this new factory, a good safety design is needed in the design of the electrical system so that production continuity is not disturbed and reliability values are high. Therefore, over-current protection coordination studies are needed on the electrical system of the kiln area at Trafo 2 Indarung VI PT. Semen Padang to get a safe and reliable system. In the final task, this time will be done modeling, simulation of load flow and short circuit, calculation of relay settings, and simulation of coordination of overcurrent protection phase interference in the electrical system kiln area in Transformer 2 Factory Indarung VI PT. Semen Padang. The plot results of the coordination of the time flow curve obtained through the results of analysis and manual calculations recommended tuning pick-up overcurrent relayand grading time overcurrent relaytuning phase interference. Grading time between overcurrent relay is coordinated by 0.2 seconds. With the protection coordination setting, the electrical system of the kiln area at the Indarung VI factory PT. Semen Padang is safer and more reliable.


Author(s):  
Robi Kurniawan ◽  
Ardiansyah Nasution ◽  
Arnawan Hasibuan ◽  
Muzamir Isa ◽  
Muskan Gard ◽  
...  

Distributed Generation (DG) is a small capacity generator located in the electricity distribution system and is usually placed on buses that are connected directly to the load. Placement of distributed generation is one of the technical efforts to reduce voltage drop and power losses in the system. In addition, load flow analysis is a study to plan and determine the amount of power in an electric power system. The results of power losses after adding distributed generation were the best in the fifth experiment on bus 149, where the system experienced a total loss of active power (P) previously of 720,822 kW, to 682,939 kW and total loss of reactive power (Q) previously of 530.02 kVar, to 405.835 kVar. From the results of the calculation of the power flow using ETAP software (Electrical Transient Analyzer Program). So, it can be concluded that the electrical network system can be said to be good. The results obtained are the more DG (wind turbine generator) that is input into the bus it will reduce the voltage drop that occurs. After simulating the overall voltage drop, it still meets the standards according to the results of the Text Report on ETAP.


Author(s):  
Trahman Sitepu ◽  
Ayu Tamara Malau ◽  
C Cholish ◽  
A Abdullah

Renewable energy generated from sunlight (Solar Panels) can be formed as alternative energy that can be applied to a source of electrical energy in rice thresher equipment. The use of solar energy with a power of 240 WP through the object on the rice thresher is able to replace the rice thresher automatically which is more effective. The power generated by solar energy will be processed into a charging source for the Regulated Battery Charger which can be supplied at a voltage to the control circuit to drive the DC motor. The average voltage generated by solar energy is 0.000394 volts/lux with a maximum voltage of 36.2 volts and a DC motor of 350 watts. In addition, the speed of this rice thresher is 950.8 rpm and is able to produce very good rice cutting against the designed solar energy capabilities.


Author(s):  
Syarifah Muthia Putri ◽  
Dina Maizana ◽  
Muhammad Rizal Irhami

Lighting systems that are not up to standard will have an impact on eye fatigue so that the work results of the staff are not optimal. This problem can be solved by designing a lighting system according to the standards that have been determined through the results of previous studies. The 1st floor of the Faculty Engineering, Universitas Medan Area building requires lighting improvements to provide comfort to all staff and lecturers. This research was conducted by measuring the value of light intensity in each room and improving the lighting system which was analyzed through the shape of the room, the color of the walls, and the position of the lights. The results of the study provide additional light points and the position of the lamp according to the utilization. 


Author(s):  
Arnawan Hasibuan ◽  
Robi Kurniawan ◽  
Muzamir Isa ◽  
Mursalin Mursalin

The use of fuel is one thing that needs special attention, because most of the operating costs of a plant are fuel costs. One of the efforts to minimize the cost of generating fuel is called Economic dispatch. In this study, an Equal Incremental Cost method with a Linear Regression approach will be presented to obtain a minimum generation cost. The case taken is the Pangkalan Susu PLTU which operates two generating units. Based on the results of calculations using the Equal Incremental Cost method with the Linear Regression approach, the cost is -0.033% or an average of -13,111 $/hour.


Author(s):  
Govinda Prashad Pandey ◽  
Ashish Shrestha ◽  
Bijen Mali ◽  
Ajay Singh ◽  
Ajay Kumar Jha

Increasing unplanned energy demand increase has led to network congestion, increases power losses and poor voltage profile. To decrease these effects of an unmanaged power system, distribution network reconfiguration provides an effective solution. This paper deals with improving the power losses and poor voltage profile of the Phulchowk Distribution and Consumer Services (DCS) via the implementation of an optimum reconfiguration approach. A Genetic Algorithm (GA) is developed for the optimization. Further, it tries to answer to what extent can we improve the distribution system without overhauling the entire network. The developed simulation algorithm is firstly put into work on the IEEE 33 bus system to better its voltage profile and the poor power losses. The effectiveness of the developed system is validated as it reduced the voltage drop by 5.66% and the power loss by 25.96%. With the solution validated, the algorithm is further implemented in the case of Pulchowk DCS. After reconfiguring the system in different individual cases, optimum network reconfiguration is selected that improved the voltage profile by 3.85%, and the active and reactive power losses by 44.29% and 45.54% respectively from the base case scenario.


Author(s):  
Indra Roza ◽  
Yussa Ananda ◽  
Lisa Adriana Siregar ◽  
Dharmawati Dharmawati ◽  
Junaidi Junaidi

Distribution transformer is a component in distributing electricity from distribution substations to consumers. Damage to distribution transformers causes continuity of customer service to be disrupted (power cut or blackout occurs). The length of the PLN electricity network requires a transformer to distribute electricity to serve consumers and how to maintain the transformer. The daily load curve of a peak load for housing, shops and factories / industries varies. Load served 200 kVA distribution transformer cannot serve the load on housing, shops and factories / industry. The method used is the replacement of a distribution transformer with a capacity of one stage greater or the replacement of a distribution transformer with a capacity of two levels larger. The distribution transformer carried out by the research is a capacity of 200 kVA replaced by 250 kVA. The ability of a distribution transformer cannot accommodate a load which will increase as an area is advanced. Observations made by calculating the age of the transformer by assuming the annual load growth (r) = 3% = 0.3. Annual peak load (P) = 1.8 p, u increase in oil temperature at peak load (θo = 96.21 0C; 84.16 0C). The increase in the hottest temperature above the oil cover, the increase in the temperature of the hottest place above the oil (θg = 20 0C; 20 0C). The ratio of the load loss to the nominal load excitation loss (Q = 3; 30). By assuming the values of these methods it can be estimated that the life of a distribution transformer is 20 kV, a capacity of 200 kVA is 18 years.


Sign in / Sign up

Export Citation Format

Share Document