scholarly journals Tool delivery robot using convolutional neural network

Author(s):  
Javier Pinzon-Arenas ◽  
Robinson Jimenez-Moreno

In the following article, it is presented a human-robot interaction system where algorithms were developed to control the movement of a manipulator in order to allow it to search and deliver, in the hand of the user, a desired tool with a certain orientation. A Convolutional Neural Network (CNN) was used to detect and recognize the user's hand, geometric analysis for the adjustment of the delivery status of the tool from any position of the robot and any orientation of the gripper, and a trajectory planning algorithm for the movement of the manipulator. It was possible to use the activations of a CNN developed in previous works for the detection of the position and orientation of the hand in the workspace and thus track it in real time, both in a simulated environment and in a real environment.

2017 ◽  
Vol 14 (4) ◽  
pp. 172988141772732 ◽  
Author(s):  
Mohamed Amir Sassi ◽  
Martin J-D Otis ◽  
Alexandre Campeau-Lecours

Physical human–robot interaction may present an obstacle to transparency and operations’ intuitiveness. This barrier could occur due to the vibrations caused by a stiff environment interacting with the robotic mechanisms. In this regard, this article aims to deal with the aforementioned issues while using an observer and an adaptive gain controller. The adaptation of the gain loop should be performed in all circumstances in order to maintain operators’ safety and operations’ intuitiveness. Hence, two approaches for detecting and then reducing vibrations will be introduced in this study as follows: (1) a statistical analysis of a sensor signal (force and velocity) and (2) a multilayer perceptron artificial neural network capable of compensating the first approach for ensuring vibrations identification in real time. Simulations and experimental results are then conducted and compared in order to evaluate the validity of the suggested approaches in minimizing vibrations.


2020 ◽  
Vol 144 ◽  
pp. 103664 ◽  
Author(s):  
Shiyu Zhang ◽  
Andrea Maria Zanchettin ◽  
Renzo Villa ◽  
Shuling Dai

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4916
Author(s):  
Ali Usman Gondal ◽  
Muhammad Imran Sadiq ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
...  

Urbanization is a big concern for both developed and developing countries in recent years. People shift themselves and their families to urban areas for the sake of better education and a modern lifestyle. Due to rapid urbanization, cities are facing huge challenges, one of which is waste management, as the volume of waste is directly proportional to the people living in the city. The municipalities and the city administrations use the traditional wastage classification techniques which are manual, very slow, inefficient and costly. Therefore, automatic waste classification and management is essential for the cities that are being urbanized for the better recycling of waste. Better recycling of waste gives the opportunity to reduce the amount of waste sent to landfills by reducing the need to collect new raw material. In this paper, the idea of a real-time smart waste classification model is presented that uses a hybrid approach to classify waste into various classes. Two machine learning models, a multilayer perceptron and multilayer convolutional neural network (ML-CNN), are implemented. The multilayer perceptron is used to provide binary classification, i.e., metal or non-metal waste, and the CNN identifies the class of non-metal waste. A camera is placed in front of the waste conveyor belt, which takes a picture of the waste and classifies it. Upon successful classification, an automatic hand hammer is used to push the waste into the assigned labeled bucket. Experiments were carried out in a real-time environment with image segmentation. The training, testing, and validation accuracy of the purposed model was 0.99% under different training batches with different input features.


Sign in / Sign up

Export Citation Format

Share Document