scholarly journals Potential and Electric Field Characteristics of Broken Porcelain Insulator

Author(s):  
H. Rosli ◽  
N. A. Othman ◽  
N. A. M. Jamail ◽  
M. N. Ismail

<span lang="EN-GB">Overhead line insulators can be damaged for various reasons during their service life. Porcelain or glass insulators once damaged can affect the reliability of power system networks. This paper presents the study of voltage and electric characteristics along the surface of a broken porcelain insulator located in a string of 10 unit insulators. Three models of broken porcelain insulators were being proposed and the analysis results on voltage and electric characteristics were individually collected. The broken porcelain insulator with the most significant effect were then being investigated in the strings of 10 unit insulators. The finite element software of Quickfield was used to analyze the voltage and electric characteristics. Form the presented results, it is proven that the single porcelain insulators with broken shed at the nearest to the electrode terminal gave the most significant effect of voltage and electric field distribution pattern along the creepage distance. However, when this type of broken insulator was included in a string of 10 unit insulators, maximum average value of voltage achieved once the broken insulator was located at the HV terminal. Meanwhile, the highest electric field strength was recorded when the broken insulator was located in the middle of the string.</span>

2014 ◽  
Vol 521 ◽  
pp. 317-320
Author(s):  
Hui Hui Li ◽  
Zheng Zheng ◽  
Hong Bo Chen ◽  
Huan Bai ◽  
Hua Zhao Zhang ◽  
...  

Faulty insulators could appear in the HV transmission line insulator string under the comprehensive effect of electrical, mechanical and environmental factors and they can be detected according to the space potential and electric field distribution variation characteristics around the insulator string. Finite Element Method (FEM) was used to study the potential and electric field distributions of a 220kV suspension insulator string contained a zero-value insulator in windage condition, comparing with a fine insulator string. The results show that the variation of the space potential and electric field distributions of insulator string is the same as that under no windage condition. The curve of synthetic electric field along the central axis around the good insulator string is U-shape. The 10th and 11th insulators from the high-voltage end are the sensitive insulators where the distortion ratio of synthetic field strength is higher than 3%, when a faulty insulator is in the string. This result can provide preferences for the online detection of faulty insulators.


2011 ◽  
Vol 291-294 ◽  
pp. 2352-2355
Author(s):  
Cheng Lin Liu ◽  
Ze Sun ◽  
Yun Zhao ◽  
Xing Fu Song ◽  
Gui Min Lu ◽  
...  

The electric field distribution was the main factor affecting on the current efficiency of electrolysis cell. So, the electric field distribution of magnesium electrolysis cell was studied to improve the current efficiency by two of main finite element softwares, COMSOL and ANSYS. The electric field distribution and its trends with the electrolyte change from 1.25m to 1.40m were calculated by using the two softwares. Form the results, the characteristics of COMSOL and ANSYS can be obtained. The conclusions of the paper will provided a significant reference for choose the appropriate software in practice process.


Author(s):  
B Mallikarjuna ◽  
K N Ravi ◽  
V Muralidhara ◽  
N Vasudev

The porcelain insulators are investigated with the high voltage transmission line in outdoor condition. The MATLAB finite element simulation are used here to test the performance of the porcelain. The PDE software is helpful in modelling the porcelain insulator in two dimensional. The pollution layer in the porcelain assumed to be uniform. The simulation demonstrates the electric field and potential distribution in the porcelain insulator. The porcelain insulators have higher field distribution near to the high voltage line. The results are represented as graphs. The MATLAB 2017b comes with preinstalled PDE tool. In this paper the PDE tool is used for the results and analysis.


2013 ◽  
Vol 670 ◽  
pp. 48-53 ◽  
Author(s):  
Guang Lin Zhou ◽  
W.J. Chu

To avoid the open problems of the leading wheel and get a more rational structure, the paper uses PRO / E and the finite element software to analyze the leading wheel of JKM-3.25/4 multi-rope friction hoist. The results show that in the leading wheel the rib plates between the channel steel and wheel hub are removed or added the same ones will have little effect on the overall force situation, and only affect the stress of the weld bead. To solve the problem of open weld of rib plates, can consider the rib plates to be removed. When the radial angle between support wheel and drum is bigger than 6°, the overall force of the leading wheel is affected seriously. But when the radial angle is 5°, the amplitude of stress fluctuation is the minimum, which can improve the leading wheel working conditions and increase the service life of the leading wheel. Therefore the suggestion is to take the radial angle of 5° when to design the new multi-rope hoist. Study conclusions provide the theoretical supports for the leading wheel of multi-rope friction design and technical renovation.


2011 ◽  
Vol 268-270 ◽  
pp. 412-417 ◽  
Author(s):  
Ferhat Tighilt

The voltage and electric field distribution in an arrester are very important for its long operation 15 kV with and without pollution. In order to clarify the influence of pollution severity conditions on metal oxide surge arrester, the finite element method (FEM) compilation of the voltage distribution in the ZnO column varistors under different pollution layer conductivity (200 μS, 70μS, 20μS) and clean was employed using the FEMLAB package.


2021 ◽  
Vol 105 ◽  
pp. 221-227
Author(s):  
Hui Ling Wang ◽  
Chun Li Cai

The working principle of ring capacitance sensor is introduced, that is capacitance fringe effect. Finite element model is established through the Hybrid-Trefftz algorithm. Electric field analysis and simulation calculation of different sensor model are done with the finite element software ANSYS, and the optimal structure combination is obtained. And followed the example of optimal structure, the relation of dielectric constant and electric field intensity were given. The result of simulation shows the most direct and the most important two parameters that affect the sensor performance in the design of the ring capacitance sensor are the two electrodes spacing and the length. The dielectric constant of measured medium is smaller, the intensity of electric field intensity is greater. The simulation for subsequent product design has a good theoretical guidance.


Sign in / Sign up

Export Citation Format

Share Document