scholarly journals Energy storage of DFIG based wind farm using D-STATCOM

Author(s):  
Kaoutar Rabyi ◽  
Hassane Mahmoudi

<p>To accommodate the regularity of wind energy; a storage device is required for the wind turbine. This paper proposesa constant power control for wind farm based Doubly Fed Induction Generator, the suggested storage device is supercapacitor which is connected to every wind turbine of the wind farm, it provides output power stability and compensates the deviations between the available wind energy input and the desired active power output. A Distribution – Static Synchronous Compensator (D-STATCOM) is connected at the point of connection of the wind farm, it controls the active and reactive power according to the demand from orpower generation to the electrical grid. The coordinated approach between the supercapacitors and the D-STATCOM mitigates the voltage magnitude fluctuations of the wind farm and provides support to the active power. Simulation studies are carried out inMATLAB/Simulink.

2020 ◽  
Vol 17 (12) ◽  
pp. 5307-5314
Author(s):  
L. Sarojini ◽  
R. Supraja ◽  
V. Hamsadhwani ◽  
M. Sathiskumar

Limited fossil fuel resources and current environmental considerations have created wind energy as the best alternative for spotless renewable source of energy, to replace the conventional sources of energy. The Wind power production has quite a few drawbacks owing in the direction of the methods used in harnessing wind energy. This paper focuses on the method that decreases the effect of the voltage variability within the grid initiated through uncontrollable imprudent power flow and the output power fluctuation within the grid. This paper gives solution to diminish the fluctuation that creates unstable voltage across the line by installing such an energy storage device. Reactive power compensation has been mutually implemented to manage the distribution of the reactive power supply across wind farm based power networking through internal Static Synchronous Compensator (STATCOM). Here, bidirectional interleaved DC/DC-converters and double layer electrical capacitors are used. Therefore the introduction of two different systems, the energy storage systems with interleaved boost unit along with the reactive power mitigation for giant wind farms was implemented by integrating them into single system to check and review the wind power plant stability management.


2017 ◽  
Vol 7 (2) ◽  
pp. 77-91
Author(s):  
Merabet Leila ◽  
Mekki Mounira ◽  
Ourici Amel ◽  
Saad Salah

This paper describes the modelling and control system of a wind turbine, using a doubly fed induction generator. This configuration makes the wind turbine suitable for variable speed wind energy application. The power captured by the wind turbine is converted into electrical power by the induction generator, and it is transmitted to the grid by the stator and the rotor windings. The control system generates voltage command signals for rotor converter and grid converter, respectively, in order to control the power of the wind turbine. Reactive power exchanged with the network through the converters is set to 0 VAr. The control strategy has been developed using MATLAB/Simulink. The simulation results are presented and discussed in the conclusions. Keywords: Wind energy, doubly fed induction generator, grid power, modelling, control.


Author(s):  
Habib Benbouhenni

In this work, we present a comparative study between space vector modulation (SVM) and fuzzy pulse width modulation (FPWM) technique in neuro-sliding mode control (NSMC) of stator reactive and stator active power control of the doubly fed induction generator (DFIG) for wind turbine system (WTS). Two controls approach using NSMC-SVM and NSMC-FPWM control scheme are proposed and compared. The validity of the proposed control techniques is verified by simulation tests of a DFIG. The reactive power, rotor current and stator active power is determined and compared in the above strategies. The obtained results showed that the proposed NSMC with FPWM strategy has stator reactive and active power with low powers ripples and low rotor current harmonic distortion than SVM technique.


Author(s):  
PHANEENDRA. V ◽  
RAMA SEKHARA REDDY. M ◽  
VIJAYA KUMAR. M

Wind turbine generators (WTGs) are usually controlled to generate maximum electrical power from wind under normal wind conditions. With the increasing penetration of wind power into electric power grids, energy storage devices will be required to dynamically match the intermittency of wind energy. To meet the requirements of frequency and active power regulation, energy storage devices will be required to dynamically match the intermittency of wind energy. A novel twolayer constant-power control scheme for a wind farm equipped with doubly-fed induction generator (DFIG) wind turbines. Each DFIG wind turbine is equipped with a supercapacitor energy storage system (ESS) and is controlled by the low-layer WTG controllers and coordinated by a high-layer wind-farm supervisory controller (WFSC). The WFSC generates the active-power references for the low-layer WTG controllers according to the active-power demand from the grid operator; the low-layer WTG controllers then regulate each DFIG wind turbine to generate the desired amount of active power, where the deviations between the available wind energy input and desired active power output are compensated by the ESS. Simulation studies are carried out in PSCAD/EMTDC on a wind farm equipped with 15 DFIG wind turbines to verify the effectiveness of the proposed control scheme.


2012 ◽  
Vol 268-270 ◽  
pp. 1422-1425 ◽  
Author(s):  
Ying Ming Liu ◽  
En Yong Yi ◽  
Xiao Dong Wang ◽  
Hong Fang Xie

Abstract:This paper studies the control strategy of doubly-fed wind turbine to capture the maximum wind energy.The maximum wind energy capture is a more important part of the wind generation. Due to random fluctuations of the wind speed, to track the maximum power of wind turbine,we need to constantly adjust the speed of the generator, so that the generation run in the optimal tip speed ratio in different wind conditions,in order to achieve maximum power tracking. In this paper, the stator output indirect control the generator speed to achieve maximum wind energy capture,and decoupling control of active power and reactive power can be achieved.the MATLAB / SIMULINK simulation results verify the correctness and feasibility of this method.


2013 ◽  
Vol 724-725 ◽  
pp. 619-622 ◽  
Author(s):  
Chia Yu Hsu ◽  
Ta Hsiu Tseng ◽  
Pei Hwa Huang

The main purpose of this paper is to study the enhancement of the Low-Voltage-Ride-Through (LVRT) capability of the wind farm with the installment of the Static Synchronous Compensator (STATCOM) and the Static Var Compensator (SVC). With more penetration of wind energy from on-shore and off-shore wind farms, utilities have been starting to set up the regulation requiring the wind turbine generators to remain connected to the grid when a fault takes place in the system which is referred to as Low-Voltage-Ride-Through (LVRT). A wind farm composed with doubly fed induction generators is used as the study system. Both the STATCOM and the SVC are utilized as the devices for enhancing the LVRT capability of the wind farm. The results are demonstrated for comparing the performance of the two devices in the improvement of voltage dynamic characteristics of the study system.


2021 ◽  
Author(s):  
Miad Mohaghegh Montazeri

Using power electronic converters with reduced capacity in doubly-fed induction generator (DFIG) based wind turbines make them vulnerable to over-current during grid disturbances. This thesis aims to analyze the behaviour of doubly-fed induction generators based wind farm for various timing schemes of crowbar deactivation and resumption of rotor side converter (RSC) in the case of grid fault. Also, usage of a static synchronous compensator (STATCOM) for the purpose of stabilizing the grid voltage after a three-phase fault is studied in this these. Moreover, finding minimum capacity of STATCOM which ensures low-voltage ride through (LVRT) of wind farm is studied. Finally, coordination of reactive power from wind turbine generators and STATCOM in steady-state condition is performed. All the results in this thesis show that STATCOM improves low voltage ride through (LVRT) capability of wind farm and assists for an uninterrupted operation of wind turbine generators during grid faults.


Author(s):  
Salmi Hassan ◽  
Badri Abdelmajid ◽  
Zegrari Mourad ◽  
Sahel Aicha ◽  
Baghdad Abdenaceur

The paper demonstrates the feasibility of an optimal backstepping controller for doubly fed induction generator based wind turbine (DFIG). The main purpose is the extract of maximum energy and the control of active and reactive power exchanged between the generator and electrical grid in presence of uncertainty. The maximum energy is obtained by applying an algorithm based on artificial bee colony approach. Particle swarm optimization is used to select optimal value of backstepping’s parameters. The simulation is carried out on 2.4 MW DFIG based wind turbine system. The optimized performance of the proposed control technique under uncertainty parameters is established by simulation results.


2019 ◽  
Vol 8 (2) ◽  
pp. 367-374
Author(s):  
Ameerul A. J. Jeman ◽  
Naeem M. S. Hannoon ◽  
Nabil Hidayat ◽  
Mohamed M. H. Adam ◽  
Ismail Musirin ◽  
...  

As of late, expanding interest of renewable energy and consumption of non-renewable energy source have prompted developing advancement of renewable energy technology, for example, wind energy. Wind energy has turned out to be one of the reliable sources of renewable energy, which requests extra transmission capacity and better methods for sustaining system reliability. As of now, doubly fed induction generator wind turbine is the most well-known wind turbine. This paper focuses on DFIG wind farm design using MATLAB/SIMULINK and also investigates the issues of the system stability of the DFIG wind turbine micro grid power system. This analysis includes the changes of voltage, current, real power and reactive power based on various conditions of the power system.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4848
Author(s):  
Shijia Zhou ◽  
Fei Rong ◽  
Xiaojie Ning

This paper proposes a grouped, reactive power optimization control strategy to maximize the active power output of a doubly-fed induction generator (DFIG) based on a large wind farm (WF). Optimization problems are formulated based on established grouped loss models and the reactive power limits of the wind turbines (WTs). The WTs in the WF are grouped to relieve computational burden. The particle swarm optimization (PSO) algorithm is applied to optimize the distribution of reactive power among groups, and a proportional control strategy is used to distribute the reactive power requirements in each group. Furthermore, the proposed control strategy optimizes the reactive power distribution between the stator and the grid side converter (GSC) in each WT. The proposed control strategy greatly reduces the number of variables for optimization, and increases the calculation speed of the algorithm. Thus, the control strategy can not only increase the active power output of the WF but also enable the WF to track the reactive power dispatching instruction of the power grid. A simulation of the DFIG WF is given to verify the effectiveness of the proposed control strategy at different wind speeds and reactive power references.


Sign in / Sign up

Export Citation Format

Share Document