scholarly journals Passive sensor frequency selective surface for structural health monitoring

Author(s):  
F.H.W. Mustafa ◽  
S.N. Azemi ◽  
M.F. Jamlos ◽  
A.A. Al-Hadi ◽  
P.J. Soh

Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.

Author(s):  
Saidatul Norlyana Azemi ◽  
Farzana Hazira Wan Mustaffa ◽  
Mohd Faizal Jamlos ◽  
Azremi Abdullah Al-Hadi ◽  
Ping Jack Soh

Author(s):  
S. A. Suhaimi ◽  
S. N. Azemi ◽  
P. J. Soh ◽  
C.B.M. Rashidi ◽  
A Abdullah Al-Hadi

<span>This paper is introduced a passive sensor to detect the performance of the structure using three-dimensional (3D) Frequency Selective Surfaces (FSS). The proposed 3D Circular FSS results are proved behave as passive sensor with changing of sensitivity incident angles to be apply in Structural Health Monitoring (SHM) system. Moreover, this 3D Circular FSS capable to operate without stand to any (DC/AC) power and very low cost in term of installation and maintenance.</span>


Author(s):  
Maria Pina Limongelli

<p>Monitoring of structural health conditions is performed using different methods that range from periodic surveys including nondestructive testing at selected locations, to permanent monitoring using network of sensors continuously recording the structural response. These procedures aim at providing detection of possible faults or deterioration processes in order to optimally manage civil structures and infrastructures over the lifecycle. To date several guidelines have been published by different countries all over the world but protocols to apply SHM are generally not defined nor enforced. This is likely to be of the reasons that stand behind the limited diffusion and implementation of SHM for routine operations of condition assessment. In this paper building the principal aspects of the SHM process are presented and the need of the development of protocols for the different phases of the SHM process, from design to practical implementation and use are outlined.</p>


2019 ◽  
Vol 271 ◽  
pp. 01010 ◽  
Author(s):  
Dilendra Maharjan ◽  
Marlon Agüero ◽  
Chris Lippitt ◽  
Fernando Moreu

Infrastructure is the backbone of the US economy and a necessary input to every economic output [1]. The cost of infrastructure maintenance and management demands significant expense for government and private companies. Infrastructure owners want to increase efficiency and improve their bottom-line from existing infrastructure rather than building new ones [2]. One of the significant challenges for the engineering community has been adopting new technologies such as low-cost wireless smart sensors, augmented reality, Unmanned Aerial System (UAS)-based Structural Health Monitoring (SHM). To receive first-hand insight from infrastructure owners, industry professionals and researchers, a workshop entitled ‘Infrastructure, Maintenance and Management Using New Technology’ was conducted in Fort Worth, Texas. In this paper the findings from the workshop are discussed. Stakeholders highlighted safety of the bridge inspectors as the priority in the maintenance and management work. Based on the findings of this workshop it now clear that adopting new technologies leads to higher safety for field inspectors. Key aspects include importance of new technologies for obtaining actionable data for maintenance and management, owner’s perspectives on development of future technologies, current research progress and challenges faced by infrastructure industry in implementing new technologies are presented.


Sign in / Sign up

Export Citation Format

Share Document