scholarly journals Particle swarm optimisation (PSO) algorithm with reduced numberof switches in multilevel inverter (MLI)

Author(s):  
Mohammed Rasheed ◽  
Rosli Omar ◽  
Marizan Sulaiman ◽  
Wahidah Abd Halim

<p>In this work, a three-phase of multilevel inverter (MLI) with reduced number of switches components based on Newton Raphson (NR) and Particle Swarm Optimization (PSO) techniques were presented. The Selective Harmonic Elimination Pulse-Width Modulation (SHE-PWM) is a powerful technique for harmonic minimization in multilevel inverter within allowable limits. NR and PSO techniques were used to determine the switching angles by solving the non-linear equation's analysis of the output voltage waveform of the modified CHB-MLI in order to control the fundamental component. A comparison has been made between NR and PSO techniques related to optimization in order minimize harmonic distortion. The main aims of this paper cover design, modeling, construction the modified topology of the CHB-MLI for a three phase five levels inverter. The controllers based on NR and PSO were applied to the modified multilevel inverter. The inverter offers much less THD using PSO scheme compared with the NR scheme. The performance of the proposed controllers based on NR and PSO techniques done by using MATLAB/Simulink of results are compared.</p>

Author(s):  
Mohammed Rasheed ◽  
Rosli Omar ◽  
Marizan Sulaiman ◽  
Wahidah Abd Halim

<span>In this paper, modified multilevel inverter, via addition of an auxiliary bidirectional switch, based on Newton Raphson (NR) and Particle Swarm Optimization (PSO) techniques is presented. The NR and PSO techniques were employed for selective harmonics elimination (SHE) solution in a modified Cascaded H Bridge Multilevel inverter (CHB-MLI). The Selective Harmonic Elimination Pulse-Width Modulation (SHE-PWM) is a powerful technique for harmonic minimization in multilevel inverter. The NR and PSO techniques were used to determine the switching angles by solving the non-linear equations of the output voltage waveform of the modified CHB-MLI in order to control the fundamental component and eliminate some low order harmonics. The proposed NR and PSO techniques are capable to minimize the Total Harmonic Distortion (THD) of the output voltage of the modified inverter within allowable limits. This paper aims to modeling and simulation by MATLAB of the modified topology of the CHB-MLI for a single-phase prototype for 13-levels. The inverter offers less THD and greater efficiency using PSO control algorithm compared with the NR algorithm. <br https://server9.kproxy.com/servlet/redirect.srv/sruj/snbzofspy/skvyzff/p1/> The performance of the proposed controllers based on NR and PSO techniques is verified through simulation.</span>


2021 ◽  
Author(s):  
Baharuddin Ismail ◽  
Muzamir Isa ◽  
M. Z. Aikhsan ◽  
M. N. K. H. Rohani ◽  
C. L. Wooi ◽  
...  

The quality of power of the cascaded H-bridge multilevel inverter is affected due to harmonics. In this paper, a Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) method including controllable DC link voltage is introduced for the multilevel inverter. Novel mathematical modeling of SHE-PWM is established concerning the DC link voltage. Compared to ordinary selective harmonic elimination, the proposed method has an increased number of degrees of freedom because of its variable DC link voltage. On the other hand, the selective harmonic elimination utilizes constant DC link voltage. In the proposed scheme, the nonlinear equations are solved only once in the entire voltage range. As a result, the computational burden will decrease. Also, the Total Harmonic Distortion (THD) of the output voltage remains constant for various values of the operating points. The simulation is performed using Matlab Simulink and the comparison is performed with the conventional PWM method. It is intended that the proposed SHE-PWM based cascaded H-bridge multilevel inverter provides better performance in terms of lower-order harmonics and less THD compares to conventional PWM method.


Author(s):  
T. Porselvi ◽  
K. Deepa ◽  
R. Muthu

Harmonic elimination at the fundamental frequency is very much appropriate for high and medium range of power generation and applications. This paper considers a new technique for selective harmonic elimination (SHE), in which the total harmonic distortion (THD) is minimized when compared with that of the conventional one. With this technique, the harmonics at lower order are eliminated, which are more predominant than the higher ones.Cascaded H-Bridge inverter fed by a single DC is considered which is simulated with the switching angles generated by both the conventional method of SHE and the new method of SHE. The simulated results of the load voltage and the waveforms of the harmonic analysis are shown. The THD values are compared for the two techniques.  The experimental results are also shown for the new technique. The switching angles are generated with the help of field programmable gated array (FPGA) in the hardware. The value of experimental THD of voltage is compared with that of simulated THD and the comparison prove that the results are satisfactory.


2015 ◽  
Vol 785 ◽  
pp. 122-126
Author(s):  
Wahidah Abd Halim ◽  
Nasrudin Abd Rahim

This paper presents a selective harmonic elimination (SHE) modulation technique for cascaded H-bridge (CHB) multilevel inverter. The main advantage of the proposed SHE concept is its simple implementation to eliminate the specific order harmonics. The procedures used to achieve the appropriate switching angles are presented. The switching angles are offline computed using the Newton-Raphson method. The SHE scheme of the adopted inverter uses the relationship between the angles and a sinusoidal reference waveform through some combinational logic gates. Theoretical results are verified by the experimental work of a single-phase 7-level CHB inverter employing an Altera DE2 field-programmable gate array (FPGA). Results show the inverter producing an optimum stepped output voltage when selected low-order harmonics are eliminated and the voltage total harmonic distortion (THD) is improved.


Sign in / Sign up

Export Citation Format

Share Document