scholarly journals Efficient mobilenet architecture as image recognition on mobile and embedded devices

Author(s):  
Barlian Khasoggi ◽  
Ermatita Ermatita ◽  
Samsuryadi Samsuryadi

The introduction of a modern image recognition that has millions of parameters and requires a lot of training data as well as high computing power that is hungry for energy consumption so it becomes inefficient in everyday use. Machine Learning has changed the computing paradigm, from complex calculations that require high computational power to environmentally friendly technologies that can efficiently meet daily needs. To get the best training model, many studies use large numbers of datasets. However, the complexity of large datasets requires large devices and requires high computing power. Therefore large computational resources do not have high flexibility towards the tendency of human interaction which prioritizes the efficiency and effectiveness of computer vision. This study uses the Convolutional Neural Networks (CNN) method with MobileNet architecture for image recognition on mobile devices and embedded devices with limited resources with ARM-based CPUs and works with a moderate amount of training data (thousands of labeled images). As a result, the MobileNet v1 architecture on the ms8pro device can classify the caltech101 dataset with an accuracy rate 92.4% and 2.1 Watt power draw. With the level of accuracy and efficiency of the resources used, it is expected that MobileNet's architecture can change the machine learning paradigm so that it has a high degree of flexibility towards the tendency of human interaction that prioritizes the efficiency and effectiveness of computer vision.

Author(s):  
Yanting Li ◽  
Junwei Jin ◽  
Liang Zhao ◽  
Huaiguang Wu ◽  
Lijun Sun ◽  
...  

With the development of machine learning and computer vision, classification technology is becoming increasingly important. Due to the advantage in efficiency and effectiveness, collaborative representation-based classifiers (CRC) have been applied to many practical cognitive fields. In this paper, we propose a new neighborhood prior constrained collaborative representation model for pattern classification. Compared with the naive CRC models which approximate the test sample with all the training data globally, our proposed methods emphasize the guidance of the neighborhood priors in the coding process. Two different kinds of neighbor priors and the models’ weighted extensions are explored from the view of sample representation ability and relationships between the samples. Consequently, the contributions of different samples can be distinguished adaptively and the obtained representations can be more discriminative for the recognition. Experimental results on several popular databases can verify the effectiveness of our proposed methods in comparison with other state-of-the-art classifiers.


Author(s):  
Kezhen Chen ◽  
Irina Rabkina ◽  
Matthew D. McLure ◽  
Kenneth D. Forbus

Deep learning systems can perform well on some image recognition tasks. However, they have serious limitations, including requiring far more training data than humans do and being fooled by adversarial examples. By contrast, analogical learning over relational representations tends to be far more data-efficient, requiring only human-like amounts of training data. This paper introduces an approach that combines automatically constructed qualitative visual representations with analogical learning to tackle a hard computer vision problem, object recognition from sketches. Results from the MNIST dataset and a novel dataset, the Coloring Book Objects dataset, are provided. Comparison to existing approaches indicates that analogical generalization can be used to identify sketched objects from these datasets with several orders of magnitude fewer examples than deep learning systems require.


Author(s):  
Yuchen Cui ◽  
Pallavi Koppol ◽  
Henny Admoni ◽  
Scott Niekum ◽  
Reid Simmons ◽  
...  

Human-in-the-loop Machine Learning (HIL-ML) is a widely adopted paradigm for instilling human knowledge in autonomous agents. Many design choices influence the efficiency and effectiveness of such interactive learning processes, particularly the interaction type through which the human teacher may provide feedback. While different interaction types (demonstrations, preferences, etc.) have been proposed and evaluated in the HIL-ML literature, there has been little discussion of how these compare or how they should be selected to best address a particular learning problem. In this survey, we propose an organizing principle for HIL-ML that provides a way to analyze the effects of interaction types on human performance and training data. We also identify open problems in understanding the effects of interaction types.


2021 ◽  
Vol 40 (1) ◽  
Author(s):  
Tuomas Koskinen ◽  
Iikka Virkkunen ◽  
Oskar Siljama ◽  
Oskari Jessen-Juhler

AbstractPrevious research (Li et al., Understanding the disharmony between dropout and batch normalization by variance shift. CoRR abs/1801.05134 (2018). http://arxiv.org/abs/1801.05134arXiv:1801.05134) has shown the plausibility of using a modern deep convolutional neural network to detect flaws from phased-array ultrasonic data. This brings the repeatability and effectiveness of automated systems to complex ultrasonic signal evaluation, previously done exclusively by human inspectors. The major breakthrough was to use virtual flaws to generate ample flaw data for the teaching of the algorithm. This enabled the use of raw ultrasonic scan data for detection and to leverage some of the approaches used in machine learning for image recognition. Unlike traditional image recognition, training data for ultrasonic inspection is scarce. While virtual flaws allow us to broaden the data considerably, original flaws with proper flaw-size distribution are still required. This is of course the same for training human inspectors. The training of human inspectors is usually done with easily manufacturable flaws such as side-drilled holes and EDM notches. While the difference between these easily manufactured artificial flaws and real flaws is obvious, human inspectors still manage to train with them and perform well in real inspection scenarios. In the present work, we use a modern, deep convolutional neural network to detect flaws from phased-array ultrasonic data and compare the results achieved from different training data obtained from various artificial flaws. The model demonstrated good generalization capability toward flaw sizes larger than the original training data, and the effect of the minimum flaw size in the data set affects the $$a_{90/95}$$ a 90 / 95 value. This work also demonstrates how different artificial flaws, solidification cracks, EDM notch and simple simulated flaws generalize differently.


2021 ◽  
Author(s):  
Kostas Alexandridis

We provide an integrated and systematic automation approach to spatial object recognition and positional detection using AI machine learning and computer vision algorithms for Orange County, California. We describe a comprehensive methodology for multi-sensor, high-resolution field data acquisition, along with post-field processing and pre-analysis processing tasks. We developed a series of algorithmic formulations and workflows that integrate convolutional deep neural network learning with detected object positioning estimation in 360\textdegree~equirectancular photosphere imagery. We provide examples of application processing more than 800 thousand cardinal directions in photosphere images across two areas in Orange County, and present detection results for stop-sign and fire hydrant object recognition. We discuss the efficiency and effectiveness of our approach, along with broader inferences related to the performance and implications of this approach for future technological innovations, including automation of spatial data and public asset inventories, and near real-time AI field data systems.


2021 ◽  
Author(s):  
Kostas Alexandridis

We provide an integrated and systematic automation approach to spatial object recognition and positional detection using AI machine learning and computer vision algorithms for Orange County, California. We describe a comprehensive methodology for multi-sensor, high-resolution field data acquisition, along with post-field processing and pre-analysis processing tasks. We developed a series of algorithmic formulations and workflows that integrate convolutional deep neural network learning with detected object positioning estimation in 360\textdegree~equirectancular photosphere imagery. We provide examples of application processing more than 800 thousand cardinal directions in photosphere images across two areas in Orange County, and present detection results for stop-sign and fire hydrant object recognition. We discuss the efficiency and effectiveness of our approach, along with broader inferences related to the performance and implications of this approach for future technological innovations, including automation of spatial data and public asset inventories, and near real-time AI field data systems.


2020 ◽  
Vol 14 (2) ◽  
pp. 27-44
Author(s):  
Benjamin M. Abdel-Karim

The work by Mandelbrot develops a basic understanding of fractals and the artwork of Jackson Pollok to reveal the beauty fractal geometry. The pattern of recurring structures is also reflected in share prices. Mandelbrot himself speaks of the fractal heart of the financial markets. Previous research has shown the potential of image recognition. This paper presents the possibility of using the structure recognition capability of modern machine learning methods to make forecasts based on fractal course information. We generate training data from real and simulated data. These data are represented in images to train a special artificial neural network. Subsequently, real data are presented to the network for use in predicting. The results show that the forecast of time series based on stock price illustration, compared to a benchmark, delivers promising results. This paper makes two essential contributions to research. From a theoretical point of view, fractal geometry shows that it can serve as a means of legitimation for technical analysis. From a practical point of view, highly developed methods from the field of machine learning are able to recognize patterns in data through appropriate data transformation, and that models such as random walk have an informational content that can be used to train machine learning models.


2021 ◽  
Author(s):  
Kostas Alexandridis

We provide an integrated and systematic automation approach to spatial object recognition and positional detection using AI machine learning and computer vision algorithms for Orange County, California. We describe a comprehensive methodology for multi-sensor, high-resolution field data acquisition, along with post-field processing and pre-analysis processing tasks. We developed a series of algorithmic formulations and workflows that integrate convolutional deep neural network learning with detected object positioning estimation in 360 degree equirectancular photosphere imagery. We provide examples of application processing more than 800 thousand cardinal directions in photosphere images across two areas in Orange County, and present detection results for stop-sign and fire hydrant object recognition. We discuss the efficiency and effectiveness of our approach, along with broader inferences related to the performance and implications of this approach for future technological innovations, including automation of spatial data and public asset inventories, and near real-time AI field data systems.


Sign in / Sign up

Export Citation Format

Share Document