scholarly journals Classification of EMG signal for multiple hand gestures based on neural network

Author(s):  
Mohd Azlan Abu ◽  
Syazwani Rosleesham ◽  
Mohd Zubir Suboh ◽  
Mohd Syazwan Md Yid ◽  
Zainudin Kornain ◽  
...  

<span>This paper presents the classification of EMG signal for multiple hand gestures based on neural network. In this study, the Electromyography is used to measure the muscle cell’s electrical activities which is commonly represented in a function time. Every muscle has their own signals, which was produced in every movement. Surface electromyography (sEMG) is used as a non-invasive technique for acquiring the EMG signal. The development of sensors’ detection and measuring the EMG have been improved and have become more precise while maintaining a small size. In this paper, the main objective is to identify the hand gestures based on: (1) Cylindrical Grasp, (2) Supination (Twist Left), (3) Pronation (Twist Right), (4) Resting Hand and (5) Open Hand that are predefined by using Arduino IDE, CoolTerm software and Microsoft Excel before using artificial neural network for classifying purposes in MATLAB. Finally, the extraction of the EMG patterns for each movement went through features extraction of the signals which is used to train the classifier in MATLAB to classify signals in the neural network. The features extracted are using mean absolute value (MAV), median, waveform length (WL) and root mean square (RMS). The Artificial Neural Network (ANN) produced accuracy of 80% for training and testing for 10 hidden neurons layer.</span>

2005 ◽  
Vol 488-489 ◽  
pp. 793-796 ◽  
Author(s):  
Hai Ding Liu ◽  
Ai Tao Tang ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo ◽  
Ling Yun Wang

A model was developed for the analysis and prediction of correlation between composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by applying artificial neural network (ANN). The input parameters of the neural network (NN) are alloy composition. The outputs of the NN model are important mechanical properties, including ultimate tensile strength, tensile yield strength and elongation. The model is based on multilayer feedforward neural network. The NN was trained with comprehensive data set collected from domestic and foreign literature. A very good performance of the neural network was achieved. The model can be used for the simulation and prediction of mechanical properties of AZ system magnesium alloys as functions of composition.


2021 ◽  
Vol 12 (3) ◽  
pp. 35-43
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Coronary artery disease (CAD) has been the leading cause of death worldwide over the past 10 years. Researchers have been using several data mining techniques to help healthcare professionals diagnose heart disease. The neural network (NN) can provide an excellent solution to identify and classify different diseases. The artificial neural network (ANN) methods play an essential role in recognizes diseases in the CAD. The authors proposed multilayer perceptron neural network (MLPNN) among one hidden layer neuron (MLP) and four hidden layers neurons (P-MLP)-based highly accurate artificial neural network (ANN) method for the classification of the CAD dataset. Therefore, the ten-fold cross-validation (T-FCV) method, P-MLP algorithms, and base classifiers of MLP were employed. The P-MLP algorithm yielded very high accuracy (86.47% in CAD-56 and 98.35% in CAD-59 datasets) and F1-Score (90.36% in CAD-56 and 98.83% in CAD-59 datasets) rates, which have not been reported simultaneously in the MLP.


2020 ◽  
pp. 1632-1649
Author(s):  
Veronica Chan ◽  
Christine W. Chan

This paper discusses development and application of a decomposition neural network rule extraction algorithm for nonlinear regression problems. The algorithm is called the piece-wise linear artificial neural network or PWL-ANN algorithm. The objective of the algorithm is to “open up” the black box of a neural network model so that rules in the form of linear equations are generated by approximating the sigmoid activation functions of the hidden neurons in an artificial neural network (ANN). The preliminary results showed that the algorithm gives high fidelity and satisfactory results on sixteen of the nineteen tested datasets. By analyzing the values of R2 given by the PWL approximation on the hidden neurons and the overall output, it is evident that in addition to accurate approximation of each individual node of a given ANN model, there are more factors affecting the fidelity of the PWL-ANN algorithm Nevertheless, the algorithm shows promising potential for domains when better understanding about the problem is needed.


Author(s):  
Nani Fadzlina Naim ◽  
Ahmad Ihsan Mohd Yassin ◽  
Nurafizah Binti Zakaria ◽  
Norfishah Ab. Wahab

2010 ◽  
Vol 61 (4) ◽  
pp. 235-240 ◽  
Author(s):  
Perumal Chandrasekar ◽  
Vijayarajan Kamaraj

Detection and Classification of Power Quality Disturbancewaveform Using MRA Based Modified Wavelet Transfrom and Neural Networks In this paper, the modified wavelet based artificial neural network (ANN) is implemented and tested for power signal disturbances. The power signal is decomposed by using modified wavelet transform and the classification is carried by using ANN. Discrete modified wavelet transforms based signal decomposition technique is integrated with the back propagation artificial neural network model is proposed. Varieties of power quality events including voltage sag, swell, momentary interruption, harmonics, transient oscillation and voltage fluctuation are used to test the performance of the proposed approach. The simulation is carried out by using MATLAB software. The simulation results show that the proposed scheme offers superior detection and classification compared to the conventional approaches.


2017 ◽  
Vol 12 (S333) ◽  
pp. 39-42
Author(s):  
Hayato Shimabukuro ◽  
Benoit Semelin

AbstractThe 21cm signal at epoch of reionization (EoR) should be observed within next decade. We expect that cosmic 21cm signal at the EoR provides us both cosmological and astrophysical information. In order to extract fruitful information from observation data, we need to develop inversion method. For such a method, we introduce artificial neural network (ANN) which is one of the machine learning techniques. We apply the ANN to inversion problem to constrain astrophysical parameters from 21cm power spectrum. We train the architecture of the neural network with 70 training datasets and apply it to 54 test datasets with different value of parameters. We find that the quality of the parameter reconstruction depends on the sensitivity of the power spectrum to the different parameter sets at a given redshift and also find that the accuracy of reconstruction is improved by increasing the number of given redshifts. We conclude that the ANN is viable inversion method whose main strength is that they require a sparse extrapolation of the parameter space and thus should be usable with full simulation.


2013 ◽  
Vol 641-642 ◽  
pp. 460-463
Author(s):  
Yong Gang Liu ◽  
Xin Tian ◽  
Yue Qiang Jiang ◽  
Gong Bing Li ◽  
Yi Zhou Li

In this study, a three-layer artificial neural network(ANN) model was constructed to predict the detonation pressure of aluminized explosive. Elemental composition and loading density were employed as input descriptors and detonation pressure was used as output. The dataset of 41 aluminized explosives was randomly divided into a training set (30) and a prediction set (11). After optimized by adjusting various parameters, the optimal condition of the neural network was obtained. Simulated with the final optimum neural network [6–9–1], calculated detonation pressures show good agreement with experimental results. It is shown here that ANN is able to produce accurate predictions of the detonation pressure of aluminized explosive.


Sign in / Sign up

Export Citation Format

Share Document