tensile yield strength
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 42)

H-INDEX

14
(FIVE YEARS 5)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 142
Author(s):  
Minghao Guo ◽  
Ming Sun ◽  
Junhui Huang ◽  
Song Pang

Fabrication condition greatly influences the microstructures and properties of Al alloys. However, most of the available reports focus on a single fabrication technique, indicating there is still a lack of systematic comparisons among wider ranges of fabrication methods. In this paper, with conventional casting (via sand/Fe/Cu mold) and additive manufacturing (AM, via selective laser melting, SLM) methods, the effects of cooling rate (Ṫ) on the microstructures and mechanical properties of hypoeutectic Al-10Si-0.5Mg alloy are systematically investigated. The results show that with increasing cooling rate from sand-mold condition to SLM condition, the grain size (d) is continuously refined from ~3522 ± 668 μm to ~10 μm, and the grain morphology is gradually refined from coarse dendrites to a mixed grain structure composed of columnar plus fine grains (~10 μm). The eutectic Si particles are effectively refined from blocky shape under sand/Fe-mold conditions to needle-like under Cu-mold conditions, and finally to fine fibrous network under SLM condition. The tensile yield strength and elongation is greatly improved from 125 ± 5 MPa (sand-mold) to 262 ± 3 MPa (SLM) and from 0.8 ± 0.2% (sand-mold) to 4.0 ± 0.2% (SLM), respectively. The strengthening mechanism is discussed, which is mainly ascribed to the continuous refinement of grains and Si particles and an increase in super-saturation of Al matrix with increasing cooling rate.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Tingting Liu ◽  
Yanglu Liu ◽  
Lu Xiao ◽  
Shibo Zhou ◽  
Bo Song

Mg–Al binary alloys in the concentration range from 0 to 4.0 wt.% Al have been prepared under conventional casting conditions. The as-cast Mg and Mg–Al alloys after solution treatment were processed via hot extrusion at 350 °C. The results show that Al has a positive influence on grain refinement and solution strengthening. The as-extruded Mg–Al alloys are fully recrystallized, and the tensile yield strength of the binary alloys is two times higher than that of pure Mg. Furthermore, the elongations of Mg–Al alloys are much higher than that of pure Mg. In addition, Mg and Mg–Al alloys were further studied by the viscoplastic self-consistent (VPSC) model to explore the activation and evolution of deformation modes. The simulation results match well with the experimental results.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4204
Author(s):  
Angxuan Wu ◽  
Lan Jia ◽  
Wenwen Yu ◽  
Fengbo Zhu ◽  
Fuyong Liu ◽  
...  

In recent years, buried bellows have often had safety accidents such as pipeline bursts and ground subsidence due to the lack of adequate mechanical properties and other quality problems. In order to improve the mechanical properties of bellows, fly ash (FA) was used as a reinforced filler in high density polyethylene (HDPE) to develop composites. The FA was surface treated with a silane coupling agent and HDPE-g-maleic anhydride was used as compatibilizer. Dumbbell-shaped samples were prepared via extrusion blending and injection molding. The cross-section morphology, thermal stability and mechanical properties of the composites were studied. It was observed that when 10% modified FA and 5% compatibilizer were added to HDPE, the tensile yield strength and tensile breaking strength of the composites were nearly 30.2% and 40.4% higher than those of pure HDPE, respectively, and the Young’s modulus could reach 1451.07 MPa. In addition, the ring stiffness of the bellows was analyzed using finite element analysis. Compared with a same-diameter bellows fabricated from common commercially available materials, the ring stiffness increased by nearly 23%. The preparation method of FA/HDPE is simple, efficient, and low-cost. It is of great significance for the popularization of high-performance bellows and the high value-added utilization of FA.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1228
Author(s):  
Honglin Zhang ◽  
Zhigang Xu ◽  
Laszlo J. Kecskes ◽  
Sergey Yarmolenko ◽  
Jagannathan Sankar

The present work mainly investigated the effect of extrusion temperatures on the microstructure and mechanical properties of Mg-1.3Zn-0.5Ca (wt.%) alloys. The alloys were subjected to extrusion at 300 °C, 350 °C, and 400 °C with an extrusion ratio of 9.37. The results demonstrated that both the average size and volume fraction of dynamic recrystallized (DRXed) grains increased with increasing extrusion temperature (DRXed fractions of 0.43, 0.61, and 0.97 for 300 °C, 350 °C, and 400 °C, respectively). Moreover, the as-extruded alloys exhibited a typical basal fiber texture. The alloy extruded at 300 °C had a microstructure composed of fine DRXed grains of ~1.54 µm and strongly textured elongated unDRXed grains. It also had an ultimate tensile strength (UTS) of 355 MPa, tensile yield strength (TYS) of 284 MPa, and an elongation (EL) of 5.7%. In contrast, after extrusion at 400 °C, the microstructure was almost completely DRXed with a greatly weakened texture, resulting in an improved EL of 15.1% and UTS of 274 MPa, TYS of 220 MPa. At the intermediate temperature of 350 °C, the alloy had a UTS of 298 MPa, TYS of 234 MPa, and EL of 12.8%.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5627
Author(s):  
Navid Sohrabi ◽  
Annapaola Parrilli ◽  
Jamasp Jhabvala ◽  
Antonia Neels ◽  
Roland E. Logé

In the past few years, laser powder-bed fusion (LPBF) of bulk metallic glasses (BMGs) has gained significant interest because of the high heating and cooling rates inherent to the process, providing the means to bypass the crystallization threshold. In this study, (for the first time) the tensile and Charpy impact toughness properties of a Zr-based BMG fabricated via LPBF were investigated. The presence of defects and lack of fusion (LoF) in the near-surface region of the samples resulted in low properties. Increasing the laser power at the borders mitigated LoF formation in the near-surface region, leading to an almost 27% increase in tensile yield strength and impact toughness. Comparatively, increasing the core laser power did not have a significant influence. It was therefore confirmed that, for BMGs like for crystalline alloys, near-surface LoFs are more detrimental than core LoFs. Although increasing the border and core laser power resulted in a higher crystallized fraction, detrimental to the mechanical properties, reducing the formation of LoF defects (confirmed using micro-computed tomography, Micro-CT) was comparatively more important.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan Li ◽  
Guangya Zhu ◽  
Kai Zhou ◽  
Pengfei Meng ◽  
Guodong Wang

AbstractThis paper evaluates the potential usage of graphene/crosslinked polyethylene (graphene/XLPE) as the insulating material for high voltage direct current (HVDC) cables. Thermal, mechanical and electrical properties of blends with/without graphene were evaluated by differential scanning calorimetry (DSC), tensile strength, DC conductivity, space charge measurements and water tree aging test. The results indicate that 0.007–0.008% weight amount of graphene can improve the mechanical and electrical insulation properties of XLPE blends, namely higher tensile/yield strength, improved space charge distribution, and shorter/fewer water tree branches. The improvements mainly attribute to the high stiffness of graphene, deep traps introduced by the interaction zones of graphene and XLPE, and the blockage effect of graphene within XLPE. For thermal performance of XLPE blends, graphene nano-fillers have but limited improvement. The crystallinity of the blends barely changes with the addition of graphene. However, the crosslinking degree increases as the additive-like amounts of graphene doped. The above findings provide a guide for tailoring lightweight XLPE materials with excellent mechanical and electrical performances by doping them with a small amount of graphene.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 296
Author(s):  
Irina Brodova ◽  
Dmitriy Rasposienko ◽  
Irina Shirinkina ◽  
Anastasia Petrova ◽  
Torgom Akopyan ◽  
...  

This paper identifies the mechanisms of phase and structural transformations during severe plastic deformation by shearing under pressure (high-pressure torsion) of an Al-Zn-Mg-Fe-Ni-based aluminum alloy depending on different initial states of the material (an ingot after homogenizing annealing and a rod produced by radial-shear rolling). Scanning and transmission electron microscopy are used to determine the morphological and size characteristics of the structural constituents of the alloy after high-pressure torsion. It has been found that, irrespective of the history under high-pressure torsion, fragmentation and dynamic recrystallization results in a nanostructural alloy with a high microhardness of 2000 to 2600 MPa. Combined deformation processing (high-pressure torsion + radial-shear rolling) is shown to yield a nanocomposite reinforced with dispersed intermetallic phases of different origins, namely Al9FeNi eutectic aluminides and MgZn2, Al2Mg3Zn3, and Al3Zr secondary phases. The results of uniaxial tensile testing demonstrate good mechanical properties of the composite (ultimate tensile strength of 640 MPa, tensile yield strength of 628 MPa, and elongation of 5%).


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 452
Author(s):  
Kai Wang ◽  
Jianing Shen ◽  
Zhao Ma ◽  
Yipeng Zhang ◽  
Nai Xu ◽  
...  

Polyglycolic acid (PGA) is used as a reinforcing component to enhance the mechanical properties of poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG). The tensile performance, micromorphology, crystallinity, heat resistance, and melt mass flow rates (MFRs) of PETG/PGA blends with varying PGA contents were studied. Both the tensile yield strength and tensile modulus of the PETG/PGA blends increased gradually with an increase in the PGA content from 0 to 35 wt%. The tensile yield strength of the PETG/PGA (65/35) blend increased by 8.7% (44.38 to 48.24 MPa), and the tensile modulus increased by 40.2% (1076 to 1509 MPa). However, its tensile ductility decreased drastically, owing to the poor interfacial compatibility of PETG/PGA and the oversized PGA domains. A multiple epoxy chain extender (ADR) was introduced into the PETG/PGA (65/35) blend to improve its interfacial compatibility and rheological properties. The tensile performance, micromorphology, rheological properties, crystallinity, and heat resistance of PETG/PGA (65/35) blends with varying ADR contents were studied. The strong chain extension effect of ADR along with its reactive compatibilization improved the rheological properties and tensile ductility. By carefully controlling the ADR concentration, the performance of PETG/PGA blends can be regulated for different applications.


2021 ◽  
Vol 249 ◽  
pp. 08008
Author(s):  
Abbas Farhat ◽  
Li-Hua Luu ◽  
Pierre Philippe ◽  
Pablo Cuéllar

We experimentally investigated cohesion of artificially bonded granular materials made of spherical glass beads cemented by solid paraffin bonds. By means of laboratory tests designed and carried out for investigation at different scales, we measured the tensile yield strength for solid bonds both at the inter-particle micro-scale and cemented samples at the meso-scale. A parametric study has been performed by varying some of the granular material properties (bead diameter, paraffin content as well as the dimension of the sample for the meso-scale tensile tests. We finally propose a discusion on: (i) the relationship between the microscopic and macroscopic cohesion forces relying on classical homogenisation laws ; (ii) the potential impact of size effects based on a simple phenomenological model.


Sign in / Sign up

Export Citation Format

Share Document