scholarly journals Effects of intensity of magnetic field generated by neodymium permanent magnet sheets on electrical characteristics of monocrystalline silicon solar cell

Author(s):  
Piyapat Panmuang ◽  
C. Photong

<span>In this research, the effects of magnetic field intensity on electrical characteristics of a monocrystalline silicon solar cell were investigated. The experimental test-rig under Standard Test Condition was set up and tested to observe the respective effects. The electrical characteristics in terms of current-voltage-power curves, critical solar cell parameters and fill factor were then examined and analyzed. The outcome of this study demonstrates that the external magnetic field has a positive impact on electrical parameters, the experimental results showed that applying magnetic intensity of 60-260mT significantly affected the electrical characteristics of the cell; i.e., maximized cell current, voltage and power by 12.20, 7.12 and 23.60%, respectively. In addition, this positive impact consequencely happened on the i-v and p-v electrical characteristics curves of the solar cell; reflected by 3.69% increasing in the fill factor. </span>

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Mohammed S. Rasheed

<p>In this paper, the major physical parameters of a commercial silicon solar cell such as maximum current, maximum voltage, fill factor, and efficiency have been investigated. The important parameters of a silicon cell are examined using Linear Programming Problem (LPB) and the obtained results are compared with those of experimental values. The experimental results of the solar cell show excellent agreement as compared with those obtained by LPB. </p>


2019 ◽  
Vol 87 (3) ◽  
pp. 30101 ◽  
Author(s):  
Abdel-baset H. Mekky

Semiconductor materials cadmium sulfide (CdS) and cadmium telluride (CdTe) are employed in the fabrication of thin film solar cells of relatively excessive power conversion efficiency and low producing price. Simulations of thin film CdS/CdTe solar cell were carried out using SCAPS-1D. The influence of temperature field on the variation of CdTe solar cell parameters such as current–voltage, capacitance–voltage characteristics and the external quantum efficiency was investigated theoretically. For use temperatures, one obtains the external quantum efficiency has the same profiles. However, the effect of the temperature on the Mott-Schottky curves is slightly noted by variations on the characteristics. This conclusion can be used by solar cell manufacturers to improve the solar cell parameters with the biggest possible gain in device performance.


2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


Sign in / Sign up

Export Citation Format

Share Document