scholarly journals Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology

Author(s):  
Yosra Abdulaziz Mohammed ◽  
Eman Gadban Saleh

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC).   Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>

2014 ◽  
Vol 15 (14) ◽  
pp. 5883-5888 ◽  
Author(s):  
Javad Faradmal ◽  
Ali Reza Soltanian ◽  
Ghodratollah Roshanaei ◽  
Reza Khodabakhshi ◽  
Amir Kasaeian

Author(s):  
Venkateswara Rao Mudunuru ◽  
Leslaw A. Skrzypek

In the field of medicine, several recent studies have shown the value of Artificial Neural Networks, decision trees, logistic regression are playing a major role as the predictor, and classification methods. The research has been expanded to estimate the incidence of breast, lung, liver, ovarian, cervical, bladder and skin cancer. The main aim of this paper is to develop models of logistic regression, Artificial Neural Networks, and Decision trees using the same input and output variables and to compare their success in predicting breast cancer survival in woman. To find the best model for breast cancer survival, the sensitivity and specificity of all these models are measured and evaluated with their respective confidence intervals and the ROC values.


2021 ◽  
pp. 814-825 ◽  
Author(s):  
Gayathri Yerrapragada ◽  
Athanasios Siadimas ◽  
Amir Babaeian ◽  
Vishakha Sharma ◽  
Tyler J. O'Neill

PURPOSE Adherence to tamoxifen citrate among women diagnosed with metastatic breast cancer can improve survival and minimize recurrence. This study aimed to use real-world data and machine learning (ML) methods to classify tamoxifen nonadherence. METHODS A cohort of women diagnosed with metastatic breast cancer from 2012 to 2017 were identified from IBM MarketScan Commercial Claims and Encounters and Medicare claims databases. Patients with < 80% proportion of days coverage in the year following treatment initiation were classified as nonadherent. Training and internal validation cohorts were randomly generated (4:1 ratio). Clinical procedures, comorbidity, treatment, and health care encounter features in the year before tamoxifen initiation were used to train logistic regression, boosted logistic regression, random forest, and feedforward neural network models and were internally validated on the basis of area under receiver operating characteristic curve. The most predictive ML approach was evaluated to assess feature importance. RESULTS A total of 3,022 patients were included with 40% classified as nonadherent. All models had moderate predictive accuracy. Logistic regression (area under receiver operating characteristic 0.64) was interpreted with 94% sensitivity (95% CI, 89 to 92) and 0.31 specificity (95% CI, 29 to 33). The model accurately classified adherence (negative predictive value 89%) but was nondiscriminate for nonadherence (positive predictive value 48%). Variable importance identified top predictive factors, including age ≥ 55 years and pretreatment procedures (lymphatic nuclear medicine, radiation oncology, and arterial surgery). CONCLUSION ML using baseline administrative data predicts tamoxifen nonadherence. Screening at treatment initiation may support personalized care, improve health outcomes, and minimize cost. Baseline claims may not be sufficient to discriminate adherence. Further validation with enriched longitudinal data may improve model performance.


2020 ◽  
pp. 105477382098527
Author(s):  
Jane Flanagan ◽  
Marie Boltz ◽  
Ming Ji

We aimed to build a predictive model with intrinsic factors measured upon admission to skilled nursing facilities (SNFs) post-acute care (PAC) to identify older adults transferred from SNFs to long-term care (LTC) instead of home. We analyzed data from Massachusetts in 23,662 persons admitted to SNFs from PAC in 2013. Explanatory logistic regression analysis identified single “intrinsic predictors” related to LTC placement. To assess overfitting, the logistic regression predictive model was cross-validated and evaluated by its receiver operating characteristic (ROC) curve. A 12-variable predictive model with “intrinsic predictors” demonstrated both high in-sample and out-of-sample predictive accuracy in the receiver operating characteristic ROC and area under the ROC among patients at risk of LTC placement. This predictive model may be used for early identification of patients at risk for LTC after hospitalization in order to support targeted rehabilitative approaches and resource planning.


Oncology ◽  
1999 ◽  
Vol 57 (4) ◽  
pp. 281-286 ◽  
Author(s):  
M. Lundin ◽  
J. Lundin ◽  
H.B. Burke ◽  
S. Toikkanen ◽  
L. Pylkkänen ◽  
...  

2005 ◽  
Vol 94 (3) ◽  
pp. 265-272 ◽  
Author(s):  
J.M. Jerez ◽  
L. Franco ◽  
E. Alba ◽  
A. Llombart-Cussac ◽  
A. Lluch ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Hong Yang ◽  
Sin-Hua Moi ◽  
Li-Yeh Chuang ◽  
Shyng-Shiou F. Yuan ◽  
Ming-Feng Hou ◽  
...  

The interaction between the meiotic recombination 11 homolog A (MRE11) oncoprotein and breast cancer recurrence status remains unclear. The aim of this study was to assess the interaction between MRE11 and clinicopathologic variables in breast cancer. A dataset for 254 subjects with breast cancer (220 nonrecurrent and 34 recurrent) was used in individual and cumulated receiver operating characteristic (ROC) analyses of MRE11 and 12 clinicopathologic variables for predicting breast cancer recurrence. In individual ROC analysis, the area under curve (AUC) for each predictor of breast cancer recurrence was smaller than 0.7. In cumulated ROC analysis, however, the AUC value for each predictor improved. Ten relevant variables in breast cancer recurrence were used to find the optimal prognostic indicators. The presence of any six of the following ten variables had a high (79%) sensitivity and a high (70%) specificity for predicting breast cancer recurrence: tumor size ≥ 2.4 cm, tumor stage II/III, therapy other than hormone therapy, age ≥ 52 years, MRE11 positive cells > 50%, body mass index ≥ 24, lymph node metastasis, positivity for progesterone receptor, positivity for epidermal growth factor receptor, and negativity for estrogen receptor. In conclusion, this study revealed that these 10 clinicopathologic variables are the minimum discriminators needed for optimal discriminant effectiveness in predicting breast cancer recurrence.


Sign in / Sign up

Export Citation Format

Share Document