scholarly journals Enhancement in data security and integrity using minhash technique

Author(s):  
Sa'ed Abed ◽  
Lamis Waleed ◽  
Ghadeer Aldamkhi ◽  
Khaled Hadi

Data <span>encryption process and key generation techniques protect sensitive data against any various attacks. This paper focuses on generating secured cipher keys to raise the level of security and the speed of the data integrity checking by using the MinHash function. The methodology is based on applying the cryptographic algorithms rivest-shamir-adleman (RSA) and advanced encryption standard (AES) to generate the cipher keys. These keys are used in the encryption/decryption process by utilizing the Pearson Hash and the MinHash techniques. The data is divided into shingles that are used in the Hash function to generate integers and in the MinHash function to generate the public and the private keys. MinHash technique is used to check the data integrity by comparing the sender’s and the receiver’s encrypted digest. The experimental results show that the RSA and AES algorithms based on the MinHash function have less encryption time compared to the normal hash functions by 17.35% and 43.93%, respectively. The data integrity between two large sets is improved by 100% against the original algorithm in terms of completion time, and 77% for small/medium data and 100% for large set data in terms of memory utilization.</span>

Respati ◽  
2019 ◽  
Vol 14 (1) ◽  
Author(s):  
M. Fairul Filza

INTISARITeknologi basis data adalah komponen inti dari banyak sistem komputasi. Basis data memungkinkan data yang akan disimpan dan berbagi secara elektronik. Begitu pula kebutuhan untuk memastikan integritas data dan keamanan data dari akses yang tidak diinginkan. Keamanan basis data dibuktikan dengan peningkatan jumlah kekhawatiran dan insiden kehilangan atau pelanggaran dilaporkan terhadap data yang sensitif. Penelitian ini membahas secara teknis pengamanan dalam pengambilan kembali data pada lapisan datasource dengan enkripsi simetris. Hasil dari penilitian ini adalah pembuatan virtual dan mengkamuflase tabel sehingga ketika diakses oleh penguna publik akan menampilkan rekaman data yang terenkripsi. ABSTRACTData base technology is a core component of many computing systems. The database allows data to be stored and shared electronically. Similarly, the need to ensure data integrity and data security from unwanted access. Database security is evidenced by the increasing number of concerns and incidents of loss or breach is reported against sensitive data. This study discusses the technical safeguards in taking back the data on the layer of the datasource with symmetric encryption. The result of this was the creation of a virtual and camouflage tables when accessed by users so that the public will display the encrypted data records.Keyword —  Cryptography, Data Security, Aes, Postgesql, Python, RDBMS


2015 ◽  
Vol 13 (07) ◽  
pp. 1550050 ◽  
Author(s):  
C. Vlachou ◽  
J. Rodrigues ◽  
P. Mateus ◽  
N. Paunković ◽  
A. Souto

Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 208
Author(s):  
Xiangqing Wang ◽  
Jie Zhang ◽  
Bo Wang ◽  
Kongni Zhu ◽  
Haokun Song ◽  
...  

With the increase in the popularity of cloud computing and big data applications, the amount of sensitive data transmitted through optical networks has increased dramatically. Furthermore, optical transmission systems face various security risks at the physical level. We propose a novel key distribution scheme based on signal-to-noise ratio (SNR) measurements to extract the fingerprint of the fiber channel and improve the physical level of security. The SNR varies with time because the fiber channel is affected by many physical characteristics, such as dispersion, polarization, scattering, and amplifier noise. The extracted SNR of the optical fiber channel can be used as the basis of key generation. Alice and Bob can obtain channel characteristics by measuring the SNR of the optical fiber channel and generate the consistent key by quantization coding. The security and consistency of the key are guaranteed by the randomness and reciprocity of the channel. The simulation results show that the key generation rate (KGR) can reach 25 kbps, the key consistency rate (KCR) can reach 98% after key post-processing, and the error probability of Eve’s key is ~50%. In the proposed scheme, the equipment used is simple and compatible with existing optic fiber links.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1389
Author(s):  
Jiwon Lee ◽  
Jihye Kim ◽  
Hyunok Oh

In public key broadcast encryption, anyone can securely transmit a message to a group of receivers such that privileged users can decrypt it. The three important parameters of the broadcast encryption scheme are the length of the ciphertext, the size of private/public key, and the performance of encryption/decryption. It is suggested to decrease them as much as possible; however, it turns out that decreasing one increases the other in most schemes. This paper proposes a new broadcast encryption scheme for tiny Internet of Things (IoT) equipment (BESTIE), minimizing the private key size in each user. In the proposed scheme, the private key size is O(logn), the public key size is O(logn), the encryption time per subset is O(logn), the decryption time is O(logn), and the ciphertext text size is O(r), where n denotes the maximum number of users, and r indicates the number of revoked users. The proposed scheme is the first subset difference-based broadcast encryption scheme to reduce the private key size O(logn) without sacrificing the other parameters. We prove that our proposed scheme is secure under q-Simplified Multi-Exponent Bilinear Diffie-Hellman (q-SMEBDH) in the standard model.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ruoshui Liu ◽  
Jianghui Liu ◽  
Jingjie Zhang ◽  
Moli Zhang

Cloud computing is a new way of data storage, where users tend to upload video data to cloud servers without redundantly local copies. However, it keeps the data out of users' hands which would conventionally control and manage the data. Therefore, it becomes the key issue on how to ensure the integrity and reliability of the video data stored in the cloud for the provision of video streaming services to end users. This paper details the verification methods for the integrity of video data encrypted using the fully homomorphic crytosystems in the context of cloud computing. Specifically, we apply dynamic operation to video data stored in the cloud with the method of block tags, so that the integrity of the data can be successfully verified. The whole process is based on the analysis of present Remote Data Integrity Checking (RDIC) methods.


2013 ◽  
Vol 58 (4) ◽  
pp. 823-830 ◽  
Author(s):  
X. Fan ◽  
G. Yang ◽  
Y. Mu ◽  
Y. Yu

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Guangjun Liu ◽  
Wangmei Guo ◽  
Ximeng Liu ◽  
Jinbo Xiong

Enabling remote data integrity checking with failure recovery becomes exceedingly critical in distributed cloud systems. With the properties of a lower repair bandwidth while preserving fault tolerance, regenerating coding and network coding (NC) have received much attention in the coding-based storage field. Recently, an outstanding outsourced auditing scheme named NC-Audit was proposed for regenerating-coding-based distributed storage. The scheme claimed that it can effectively achieve lightweight privacy-preserving data verification remotely for these networked distributed systems. However, our algebraic analysis shows that NC-Audit can be easily broken due to a potential defect existing in its schematic design. That is, an adversarial cloud server can forge some illegal blocks to cheat the auditor with a high probability when the coding field is large. From the perspective of algebraic security, we propose a remote data integrity checking scheme RNC-Audit by resorting to hiding partial critical information to the server without compromising system performance. Our evaluation shows that the proposed scheme has significantly lower overhead compared to the state-of-the-art schemes for distributed remote data auditing.


Sign in / Sign up

Export Citation Format

Share Document