Improving Transient Stability in Power Systems by Using Fuzzy Logic Controlled SVC

Author(s):  
Reaza Ashrafi Habib Abadi ◽  
Amir Nekoubin

<span>This paper presents the capability of a fuzzy logic based stabilizer used for generating the supplementary control signal to voltage regulator of static VAR compensator (SVC) for improving damping oscillations in power systems. Generator speed deviation and line active power were chosen as input signals for the fuzzy logic controller (FLC). The quantity of reactive power supplied/absorbed by SVC is determined based on the two input signal and deviation of terminal voltage at each sampling time. The effectiveness and feasibility of the proposed control is demonstrated with Single Machine Infinite Bus (SMIB) system and multi machine system which show improvement over the use of a fixed parameter controller. It has been observed that a robust controller is obtained with fuzzy logic controller.</span>

Trudy NAMI ◽  
2021 ◽  
pp. 87-92
Author(s):  
L. A. Skripko

Introduction (problem statement and relevance). The ability to combine the advantages of hydrogen fuel cells and lithium batteries in a hybrid electric vehicle is a fundamental challenge in the development of highly efficient, environmentally friendly transportation. At the same time, the coordinated operation of onboard sources requires the creation of complex control algorithms for all involved power supply and power consumption systems.The purpose of the research was to study the practical applicability of fuzzy logic algorithms when creating a fuel cells battery controller.Methodology and research methods. The study used modern mathematical methods for processing the controller input signals of a hydrogen vehicle hybrid power unit and generating output control signals to provide the most optimal control modes for a fuel cells battery.Scientific novelty and results. The proposed approach, based on the use of fuzzy logic algorithms, has made it possible to control the fuel cell battery power ensuring its efficient operation as part of a vehicle hybrid electric drive. The analysis of the obtained results indicated the effectiveness of the method.Practical significance. The proposed algorithms make it possible to develop and implement advanced hydrogen power systems controllers for a vehicle.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2437
Author(s):  
Md. Rifat Hazari ◽  
Effat Jahan ◽  
Mohammad Abdul Mannan ◽  
Narottam Das

This paper presents a new intelligent control strategy to augment the low-voltage ride-through (LVRT) potential of photovoltaic (PV) plants, and the transient stability of a complete grid system. Modern grid codes demand that a PV plant should be connected to the main power system during network disturbance, providing voltage support. Therefore, in this paper, a novel fuzzy logic controller (FLC) using the controlled cascaded strategy is proposed for the grid side converter (GSC) of a PV plant to guarantee voltage recovery. The proposed FLC offers variable gains based upon the system requirements, which can inject a useful amount of reactive power after a severe network disturbance. Therefore, the terminal voltage dip will be low, restoring its pre-fault value and resuming its operation quickly. To make it realistic, the PV system is linked to the well-known IEEE nine bus system. Comparative analysis is shown—using power system computer-aided design/electromagnetic transients including DC (PSCAD/EMTDC) software—between the conventional proportional–integral (PI) controller-based cascaded strategy and the proposed control strategy to authenticate the usefulness of the proposed strategy. The comparative simulation results indicate that the transient stability and the LVRT capability of a grid-tied PV system can be augmented against severe fault using the proposed FLC-based cascaded GSC controller.


Author(s):  
S Arockiaraj ◽  
BV Manikandan

In transmission line, the series compensation is used to improve stability and increases the power transmission capacity. It generates sub synchronous resonance (SSR) at turbine-generator shaft due to the interaction between the series compensation and wind turbine system. To solve this, several methods have been presented. However, these provide less performance during contingency period. Therefore, to mitigate the SSR and also to improve the dynamic performance of hybrid wind and PV system connected with series compensated wind farms, the adaptive technique of the Black Widow Optimization algorithm based Fuzzy Logic Controller (BWO-FLC) with UPFC is proposed in this paper. Here, the objective function is solved optimally using BWO technique. Based on this, the Fuzzy Logic Controller is designed. The results proved that the proposed controller performs the mitigation of SSR. The damping ratios of proposed controller to mitigation of SSR are 0.0098, 0.0139, and 0.0195 for wind speed of 6, 8 and 10 m/s respectively.


Sign in / Sign up

Export Citation Format

Share Document