Detection Algorithm of Airport Runway in Remote Sensing Images

Author(s):  
Zhuzhong Yang ◽  
Jiliu Zhou ◽  
Fangnian Lang
2021 ◽  
Vol 2138 (1) ◽  
pp. 012016
Author(s):  
Shuangling Zhu ◽  
Guli Nazi·Aili Mujiang ◽  
Huxidan Jumahong ◽  
Pazi Laiti·Nuer Maiti

Abstract A U-Net convolutional network structure is fully capable of completing the end-to-end training with extremely little data, and can achieve better results. When the convolutional network has a short link between a near input layer and a near output layer, it can implement training in a deeper, more accurate and effective way. This paper mainly proposes a high-resolution remote sensing image change detection algorithm based on dense convolutional channel attention mechanism. The detection algorithm uses U-Net network module as the basic network to extract features, combines Dense-Net dense module to enhance U-Net, and introduces dense convolution channel attention mechanism into the basic convolution unit to highlight important features, thus completing semantic segmentation of dense convolutional remote sensing images. Simulation results have verified the effectiveness and robustness of this study.


2021 ◽  
Vol 13 (16) ◽  
pp. 3319
Author(s):  
Nan Ma ◽  
Lin Sun ◽  
Chenghu Zhou ◽  
Yawen He

Automatic cloud detection in remote sensing images is of great significance. Deep-learning-based methods can achieve cloud detection with high accuracy; however, network training heavily relies on a large number of labels. Manually labelling pixel-wise level cloud and non-cloud annotations for many remote sensing images is laborious and requires expert-level knowledge. Different types of satellite images cannot share a set of training data, due to the difference in spectral range and spatial resolution between them. Hence, labelled samples in each upcoming satellite image are required to train a new deep-learning-based model. In order to overcome such a limitation, a novel cloud detection algorithm based on a spectral library and convolutional neural network (CD-SLCNN) was proposed in this paper. In this method, the residual learning and one-dimensional CNN (Res-1D-CNN) was used to accurately capture the spectral information of the pixels based on the prior spectral library, effectively preventing errors due to the uncertainties in thin clouds, broken clouds, and clear-sky pixels during remote sensing interpretation. Benefiting from data simulation, the method is suitable for the cloud detection of different types of multispectral data. A total of 62 Landsat-8 Operational Land Imagers (OLI), 25 Moderate Resolution Imaging Spectroradiometers (MODIS), and 20 Sentinel-2 satellite images acquired at different times and over different types of underlying surfaces, such as a high vegetation coverage, urban area, bare soil, water, and mountains, were used for cloud detection validation and quantitative analysis, and the cloud detection results were compared with the results from the function of the mask, MODIS cloud mask, support vector machine, and random forest. The comparison revealed that the CD-SLCNN method achieved the best performance, with a higher overall accuracy (95.6%, 95.36%, 94.27%) and mean intersection over union (77.82%, 77.94%, 77.23%) on the Landsat-8 OLI, MODIS, and Sentinel-2 data, respectively. The CD-SLCNN algorithm produced consistent results with a more accurate cloud contour on thick, thin, and broken clouds over a diverse underlying surface, and had a stable performance regarding bright surfaces, such as buildings, ice, and snow.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1465 ◽  
Author(s):  
Lili Zhang ◽  
Jisen Wu ◽  
Yu Fan ◽  
Hongmin Gao ◽  
Yehong Shao

In this paper, we consider building extraction from high spatial resolution remote sensing images. At present, most building extraction methods are based on artificial features. However, the diversity and complexity of buildings mean that building extraction methods still face great challenges, so methods based on deep learning have recently been proposed. In this paper, a building extraction framework based on a convolution neural network and edge detection algorithm is proposed. The method is called Mask R-CNN Fusion Sobel. Because of the outstanding achievement of Mask R-CNN in the field of image segmentation, this paper improves it and then applies it in remote sensing image building extraction. Our method consists of three parts. First, the convolutional neural network is used for rough location and pixel level classification, and the problem of false and missed extraction is solved by automatically discovering semantic features. Second, Sobel edge detection algorithm is used to segment building edges accurately so as to solve the problem of edge extraction and the integrity of the object of deep convolutional neural networks in semantic segmentation. Third, buildings are extracted by the fusion algorithm. We utilize the proposed framework to extract the building in high-resolution remote sensing images from Chinese satellite GF-2, and the experiments show that the average value of IOU (intersection over union) of the proposed method was 88.7% and the average value of Kappa was 87.8%, respectively. Therefore, our method can be applied to the recognition and segmentation of complex buildings and is superior to the classical method in accuracy.


2021 ◽  
Author(s):  
Ruchuan Guo ◽  
Xiaokang Ren ◽  
Zhichao Peng ◽  
Guozhi Miao

Sign in / Sign up

Export Citation Format

Share Document