edge detection algorithm
Recently Published Documents


TOTAL DOCUMENTS

616
(FIVE YEARS 138)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
Matthias Busch ◽  
Tino Hausotte

AbstractSurface determination is an essential step of the measurement process in industrial X-ray computed tomography (XCT). The starting point of the surface determination process step is a single grey value threshold within a voxel volume in conventional surface determination methods. However, this value is not always found in the reconstructed volume in the local environment of the surface of the measurement object due to various artefacts, so that none or incorrect surfaces are determined. In order to find surfaces independently of a single grey value, a three-dimensional approach of the initial contour determination based on a Prewitt edge detection algorithm is presented in this work. This method is applied to different test specimens and specimen compositions which, due to their material or material constellation, their geometric properties with regard to surfaces and interfaces as well as their calibrated size and length dimensions, embody relevant properties in the examination of joining connections. It is shown that by using the surface determination method in the measurement process, both a higher metrological structure resolution and interface structure resolution can be achieved. Surface artefacts can be reduced by the application and it is also an approach to improved surface finding for the multi-material components that are challenging for XCT.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Hui Li

Multilevel image edge repair results directly affect the follow-up image quality evaluation and recognition. Current edge detection algorithms have the problem of unclear edge detection. In order to detect more accurate edge contour information, a multilevel image edge detection algorithm based on visual perception is proposed. Firstly, the digital image is processed by double filtering and fuzzy threshold segmentation; Through the analysis of the contour features of the moving image, the threshold of the moving image features is set, and the latest membership function is obtained to complete the multithreshold optimization. Adaptive smoothing is used to process the contour of the object in the moving image, and the geometric center values of the two adjacent contour points within the contour range are calculated. According to the calculation results, the curvature angle is further calculated, and the curvature symbol is obtained. According to the curvature symbol, the contour features of the moving image are detected. The experimental results show that the proposed algorithm can effectively and accurately detect the edge contour of the image and shorten the reconstruction time, and the detection image resolution is high.


Author(s):  
Yuan Chao ◽  
Fan Shi ◽  
Wentao Shan ◽  
Dong Liang

The position identification of SMD electronic components mainly uses Canny edge detection algorithm to detect the edges of specific elements, benefited from its computational simplicity. The traditional Canny algorithm lacks the adaptability in gradient calculation and double thresholds selection, which may affect the location and identification accuracy of specific elements in electronic components. In this paper, an improved canny edge detection algorithm is proposed. The gradient magnitude is calculated in four directions, i.e., horizontal, vertical, and diagonal. Both the high and low thresholds can be adaptively determined based on the grayscale distribution information, to increase the adaptability of edge identification. The experimental results show that the proposed method can better locate the true edges of specific elements in electronic components with a reasonable processing speed, compared with the traditional Canny algorithm, and has been successfully applied on practical real-time vision inspection on SMD electronic components.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lin Feng ◽  
Jian Wang ◽  
Chao Ding

Digital image processing technology is widely used in production and life, and digital images play a pivotal role in the ever-changing technological development. Noise can affect the expression of image information. The edge is the reflection of the main structure and contour of the image, and it is also the direct interpretation of image understanding and the basis for further segmentation and recognition. Therefore, suppressing noise and improving the accuracy of edge detection are important aspects of image processing. To address these issues, this paper presents a new detection algorithm combined with information fusion based on the existing image edge detection techniques, and the algorithm is studied from two aspects of fuzzy radial basis fusion discrimination, in terms of preprocessing algorithm, comparing the denoising effect of mean and median filters with different template sizes on paper images with added noise, and selecting the improved median filter denoising, comparing different operator edge detection. The effect of image edge detection contour is finally selected as the 3 ∗ 3 Sobel operator for edge detection; the binarized image edge detection contour information is found as the minimum outer rectangle and labeled, and then, the original paper image is scanned line by line to segment the target image edge region. The image edge detection algorithm based on fuzzy radial basis fuser can not only speed up the image preprocessing, meet the real-time detection, and reduce the amount of data processed by the upper computer but also can accurately identify five image edge problems including folds and cracks, which has good application prospects.


Author(s):  
Archana J. N. ◽  
Aishwarya P. ◽  
Hanson Joseph

Computed tomography (CT) images are an essential factor in the diagnosing procedure for various diseases affecting the internal organs. Edge detection can be used for the appropriate enhancement of the lung CT scan images for the diagnosis of the various interstitial lung diseases (ILD). In order to solve the issues of edge detection provided by the traditional Sobel operator, the paper proposes a Sobel 12D edge detection algorithm which uses the additional direction templates for the better identification of the edge details. First, the vertical and horizontal directions available in the traditional Sobel operator are extended to few more directions (a total of 12 directions) which enhances the edge extraction ability. Next part, compute the edge detected image using the Sobel 12D, Laplace, Prewitt, Robert’s Cross and Scharr operators for edge detection separately. It is followed by image fusion method which optimizes the edge detection by combining the edge detected images obtained using the Sobel 12D approach and the Laplace operator. The experimental results shows that the proposed algorithms generates a better detection of the edges than the other edge detection operators.


2021 ◽  
Vol 12 (3) ◽  
pp. 175
Author(s):  
Ni Nyoman Pujianiki ◽  
I Nyoman Sudi Parwata ◽  
Takahiro Osawa

This study proposes a new simple procedure for extracting coastline from Synthetic Aperture Radar (SAR) images by utilizing a low-pass filter and edge detection algorithm. The low-pass filter is used to improve the histogram of the pixel value of the SAR image. It provides better distribution of pixel value and makes it easy to separate between sea and land surfaces. This study provides the processing steps using open-source software, i.e., SNAP SAR processor and QGIS application. This procedure has been tested using dual polarization Sentinel-1 (10x10 meters resolution) and single polarization ALOS-2 (3x3 meters resolution) dataset. The results show that using Sentinel-1 with dual polarization (VH) provides a better result than single polarization (VV). In the ALOS-2 case, only single polarization (HH) is available. However, even using only HH polarization, ALOS-2 provides a good result. In terms of resolution, ALOS-2 provides a better coastline than Sentinel-1 data due to ALOS-2 has better resolution. This procedure is expected to be helpful to detect coastline changes and for coastal area management.


2021 ◽  
Author(s):  
Qi Tang ◽  
Yi-xuan Sun ◽  
Wen-tian Wang ◽  
Yi-zhou Jing ◽  
Chun-yan Li

Sign in / Sign up

Export Citation Format

Share Document