Generation and in vitro characterisation of inhibitory nanobodies towards plasminogen activator inhibitor 1

2016 ◽  
Vol 116 (12) ◽  
pp. 1032-1040 ◽  
Author(s):  
Xiaohua Zhou ◽  
Maarten L. V. Hendrickx ◽  
Gholamreza Hassanzadeh-Ghassabeh ◽  
Serge Muyldermans ◽  
Paul J. Declerck

SummaryPlasminogen activator inhibitor 1 (PAI-1) is the principal physiological inhibitor of tissue-type plasminogen activator (t-PA) and has been identified as a risk factor in cardiovascular diseases. In order to generate nanobodies against PAI-1 to interfere with its functional properties, we constructed three nanobody libraries upon immunisation of three alpacas with three different PAI-1 variants. Three panels of nanobodies were selected against these PAI-1 variants. Evaluation of the amino acid sequence identity of the complementarity determining region-3 (CDR3) reveals 34 clusters in total. Five nanobodies (VHH-s-a98, VHH-2w-64, VHH-s-a27, VHH-s-a93 and VHH-2g-42) representing five clusters exhibit inhibition towards PAI-1 activity. VHH-s-a98 and VHH-2w-64 inhibit both glycosylated and non-glycosylated PAI-1 variants through a substrate-inducing mechanism, and bind to two different regions close to αhC and the hinge region of αhF; the profibrinolytic effect of both nanobodies was confirmed using an in vitro clot lysis assay. VHH-s-a93 may inhibit PAI-1 activity by preventing the formation of the initial PAI-1•t-PA complex formation and binds to the hinge region of the reactive centre loop. Epitopes of VHH-s-a27 and VHH-2g-42 could not be deduced yet. These five nanobodies interfere with PAI-1 activity through different mechanisms and merit further evaluation for the development of future profibrinolytic therapeutics.

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Qi Liu ◽  
Xiang Fan ◽  
Helen Brogren ◽  
Ming-Ming Ning ◽  
Eng H Lo ◽  
...  

Aims: Plasminogen activator inhibitor-1 (PAI-1) is the main and potent endogenous tissue-type plasminogen activator (tPA) inhibitor, but an important question on whether PAI-1 in blood stream responds and interferes with the exogenously administered tPA remains unexplored. We for the first time investigated temporal profiles of PAI-1 concentration and activity in circulation after stroke and tPA administration in rats. Methods: Permanent MCAO focal stroke of rats were treated with saline or 10mg/kg tPA at 3 hours after stroke (n=10 per group). Plasma (platelet free) PAI-1 antigen and activity levels were measured by ELISA at before stroke, 3, 4.5 (1.5 hours after saline or tPA treatments) and 24 hours after stroke. Since vascular endothelial cells and platelets are two major cellular sources for PAI-1 in circulation, we measured releases of PAI-1 from cultured endothelial cells and isolated platelets after direct tPA (4 μg/ml) exposures for 60 min in vitro by ELISA (n=4 per group). Results: At 3 hours after stroke, both plasma PAI-1 antigen and activity were significantly increased (3.09±0.67, and 3.42±0.57 fold of before stroke baseline, respectively, all data are expressed as mean±SE). At 4.5 hours after stroke, intravenous tPA administration significantly further elevated PAI-1 antigen levels (5.26±1.24), while as expected that tPA neutralized most elevated PAI-1 activity (0.33±0.05). At 24 hours after stroke, PAI-1 antigen levels returned to the before baseline level, however, there was a significantly higher PAI-1 activity (2.51±0.53) in tPA treated rats. In vitro tPA exposures significantly increased PAI-1 releases into culture medium in cultured endothelial cells (1.65±0.08) and platelets (2.02±0.17). Conclution: Our experimental results suggest that tPA administration may further elevate stroke-increased blood PAI-1 concentration, but also increase PAI-1 activity at late 24 hours after stroke. The increased PAI-1 releases after tPA exposures in vitro suggest tPA may directly stimulate PAI-1 secretions from vascular walls and circulation platelets, which partially contributes to the PAI-1 elevation observed in focal stroke rats. The underlying regulation mechanisms and pathological consequence need further investigation.


1994 ◽  
Vol 72 (06) ◽  
pp. 900-905 ◽  
Author(s):  
Harold A R Stringer ◽  
Peter van Swieten ◽  
Anton J G Horrevoets ◽  
Annelies Smilde ◽  
Hans Pannekoek

SummaryWe further investigated the role of the finger (F) and the kringle-2 (K2) domains of tissue-type plasminogen activator (t-PA) in fibrin-stimulated plasminogen activation. To that end, the action of purified (wt) t-PA or of variants lacking F (del.F) or K2 (del.K2) was assessed either in a static, human whole blood clot-lysis system or in whole blood thrombi generated in the “Chandler loop”. In both clot-lysis systems, significant differences were observed for the initiation of thrombolysis with equimolar concentrations of the t-PA variants. A relatively minor “lag phase” occurred in thrombolysis mediated by wt t-PA, whereas a 6.4-fold and 1.6-fold extension is found for del.F and del.K2, respectively. We observed identical lag-times, characteristic for each t-PA variant, in platelet-rich heads and in platelet-poor tails of thrombi. Since plasminogen activator inhibitor 1 (PAI-1) is preferentially retained in the platelet-rich heads, we conclude that the inhibitor does not interfere with the initial stage of thrombolysis but exerts its action in later stages, resulting in a reduction of the rate of clot lysis. A complementation clot-lysis assay was devised to study a potential interplay of del.F and del.K2. Accordingly, clot lysis was determined with combinations of del.F and del.K2 that were inversely varied in relation to equipotent dosage to distinguish between additive, antagonistic or synergistic effects of these variants. The isobole for combinations of del.F and del.K2 shows an independent, additive action of del.F and del.K2 in clot lysis. Under the conditions employed, namely a relatively high concentration of fibrin and Glu-plasminogen and a low concentration of t-PA variant, our data show: i) the crucial role of the F domain and the lack of effect of PAI-1 in initiation of thrombolysis, ii) the lack of importance of the fibrimbinding domains of t-PA and the regulatory role of PAI-1 in advanced stages of thrombolysis.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 351-356 ◽  
Author(s):  
WP Fay ◽  
DT Eitzman ◽  
AD Shapiro ◽  
EL Madison ◽  
D Ginsburg

Abstract Platelet-rich thrombi are resistant to lysis by tissue-type plasminogen activator (t-PA). Although platelet alpha-granules contain plasminogen activator inhibitor-1 (PAI-1), a fast-acting inhibitor of t-PA, the contribution of PAI-1 to the antifibrinolytic effect of platelets has remained a subject of controversy. We recently reported a patient with a homozygous mutation within the PAI-1 gene that results in complete loss of PAI-1 expression. Platelets from this individual constitute a unique reagent with which to probe the role of platelet PAI-1 in the regulation of fibrinolysis. The effects of PAI-1-deficient platelets were compared with those of normal platelets in an in vitro clot lysis assay. Although the incorporation of PAI-1-deficient platelets into clots resulted in a moderate inhibition of t-PA-mediated fibrinolysis, normal platelets markedly inhibited clot lysis under the same conditions. However, no difference between PAI-1-deficient platelets and platelets with normal PAI-1 content was observed when streptokinase or a PAI-1-resistant t-PA mutant were used to initiate fibrinolysis. In addition, PAI-1-resistant t-PA was significantly more efficient in lysing clots containing normal platelets than wild-type t-PA. We conclude that platelets inhibit t-PA-mediated fibrinolysis by both PAI- 1-dependent and PAI-1-independent mechanisms. These results have important implications for the role of PAI-1 in the resistance of platelet-rich thrombi to lysis in vivo.


1992 ◽  
Vol 67 (01) ◽  
pp. 101-105 ◽  
Author(s):  
B J Potter van Loon ◽  
D C Rijken ◽  
E J P Brommer ◽  
A P C van der Maas

SummaryThrombolytic therapy successfully reopens obstructed blood vessels in the majority of cases. However, it is not known why a substantial amount of thrombi are resistant to lysis by a fibrinolytic agent. In vitro studies have demonstrated that tissue-type plasminogen activator (t-PA) and plasminogen incorporated in the clot (during formation) increase lysibility. To test whether lysibility of in vivo formed human thrombi is related to their composition, we studied 25 venous thrombi obtained at autopsy and 21 arterial thrombi obtained during embolectomy.Plasminogen activator inhibitor-1 (PAI-1) antigen was measured in a phosphate-buffered saline (PBS) extract of each thrombus; t-PA antigen and plasminogen antigen were determined in a 6 M urea extract of the thrombus, representing bound proteins. Lysibility was measured as weight reduction during 8 h of incubation in PBS containing streptokinase (SK) 100 U/ml, corrected for spontaneous lysis, reflected by weight loss in PBS without SK. In addition, lysibility in SK was compared with lysibility in urokinase (UK) 100 U/ml and in t-PA 200 U/ml.Spontaneous lysis amounted to 29 ± 5% (mean ± SEM) and 33 ± 5% in venous and arterial thrombi, respectively, and inversely correlated with the PAI-1 content of thrombi (r = —0.43, p <0.01). Lysibility amounted to 76 ± 6% in venous and 90 ± 4% in arterial thrombi (venous vs. arterial: p = 0.051). PAI-1-, plasminogen- and t-PA-content of venous thrombi were 902 ± 129 ng, 34.3 ± 4.8 pg and 26.7 ± 3.0 ng per gram of wet thrombus respectively; for arterial thrombi these values were 2,031 ± 401 ng/g (p = 0.011), 64.1 ± 11.4 pg/g (p = 0.088) and 62.2 ± 8.3 ng/g (p = 0.0001), respectively. A correlation was found between t-PA and plasminogen (r = 0.74, p <0.001). Lysibility by SK related to plasminogen content in both venous (r = 0.60, p <0.002) and arterial (r = 0.44, p <0.05) thrombi; PAI-1 and t-PA did not correlate with lysibility. Lysibility in the chosen concentrations of SK, UK and t-PA were similar.We conclude that spontaneous lysis of thrombi in saline is dependent on PAI-1 content and that susceptibility of thrombibi to lysis by SK ex vivo is dependent on the plasminogen content


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 351-356 ◽  
Author(s):  
WP Fay ◽  
DT Eitzman ◽  
AD Shapiro ◽  
EL Madison ◽  
D Ginsburg

Platelet-rich thrombi are resistant to lysis by tissue-type plasminogen activator (t-PA). Although platelet alpha-granules contain plasminogen activator inhibitor-1 (PAI-1), a fast-acting inhibitor of t-PA, the contribution of PAI-1 to the antifibrinolytic effect of platelets has remained a subject of controversy. We recently reported a patient with a homozygous mutation within the PAI-1 gene that results in complete loss of PAI-1 expression. Platelets from this individual constitute a unique reagent with which to probe the role of platelet PAI-1 in the regulation of fibrinolysis. The effects of PAI-1-deficient platelets were compared with those of normal platelets in an in vitro clot lysis assay. Although the incorporation of PAI-1-deficient platelets into clots resulted in a moderate inhibition of t-PA-mediated fibrinolysis, normal platelets markedly inhibited clot lysis under the same conditions. However, no difference between PAI-1-deficient platelets and platelets with normal PAI-1 content was observed when streptokinase or a PAI-1-resistant t-PA mutant were used to initiate fibrinolysis. In addition, PAI-1-resistant t-PA was significantly more efficient in lysing clots containing normal platelets than wild-type t-PA. We conclude that platelets inhibit t-PA-mediated fibrinolysis by both PAI- 1-dependent and PAI-1-independent mechanisms. These results have important implications for the role of PAI-1 in the resistance of platelet-rich thrombi to lysis in vivo.


1988 ◽  
Vol 60 (02) ◽  
pp. 328-333 ◽  
Author(s):  
N J de Fouw ◽  
Y F de Jong ◽  
F Haverkate ◽  
R M Bertina

summaryThe effect of purified human activated protein G (APC) on fibrinolysis was studied using a clot iysis system consisting of purified glu-plasminogen, tissue-type plasminogen activator, plasminogen activator inhibitor (released from endothelial cells or blood platelets), fibrinogen, 125T-fibrinogen and thrombin. All proteins were of human origin.In this system APC could increase fibrinolysis in a dose dependent way, without affecting fibrin formation or fibrin crosslinking. However, this profibrinolytic effect of APC could only be observed when plasminogen activator inhibitor (PAI-l) was present. The effect of APC was completely quenched by pretreatment of APC with anti-protein C IgG or di-isopropylfluorophosphate. Addition of the cofactors of APC:protein S, Ca2+-ions and phospholipid-alone or in combination did not enhance the profibrinolytic effect of APC. These observations indicate that human APC can accelerate in vitro clot lysis by the inactivation of PAI-1 activity. However, the neutralization of PAI-1 by APC is independent of the presence or absence of protein S, phospholipid and Ca2+-ions.


1992 ◽  
Vol 68 (05) ◽  
pp. 486-494 ◽  
Author(s):  
Malou Philips ◽  
Anne-Grethe Juul ◽  
Johan Selmer ◽  
Bent Lind ◽  
Sixtus Thorsen

SummaryA new assay for functional plasminogen activator inhibitor 1 (PAI-1) in plasma was developed. The assay is based on the quantitative conversion of PAI-1 to urokinase-type plasminogen activator (u-PA)-PAI-l complex the concentration of which is then determined by an ELISA employing monoclonal anti-PAI-1 as catching antibody and monoclonal anti-u-PA as detecting antibody. The assay exhibits high sensitivity, specificity, accuracy, and precision. The level of functional PAI-1, tissue-type plasminogen activator (t-PA) activity and t-PA-PAI-1 complex was measured in normal subjects and in patients with venous thromboembolism in a silent phase. Blood collection procedures and calibration of the respective assays were rigorously standardized. It was found that the patients had a decreased fibrinolytic capacity. This could be ascribed to high plasma levels of PAI-1. The release of t-PA during venous occlusion of an arm for 10 min expressed as the increase in t-PA + t-PA-PAI-1 complex exhibited great variation and no significant difference could be demonstrated between the patients with a thrombotic tendency and the normal subjects.


1993 ◽  
Vol 70 (02) ◽  
pp. 301-306 ◽  
Author(s):  
Linda A Robbie ◽  
Nuala A Booth ◽  
Alison M Croll ◽  
Bruce Bennett

SummaryThe relative importance of the two major inhibitors of fibrinolysis, α2-antiplasmin (α2-AP) and plasminogen activator inhibitor (PAI-1), were investigated using a simple microtitre plate system to study fibrin clot lysis in vitro. Cross-linked fibrin clots contained plasminogen and tissue plasminogen activator (t-PA) at concentrations close to physiological. Purified α2-AP and PAI-1 caused dose-dependent inhibition. All the inhibition due to normal plasma, either platelet-rich or poor, was neutralised only by antibodies to α2-AP. Isolated platelets, at a final concentration similar to that in blood, 2.5 × 108/ml, markedly inhibited clot lysis. This inhibition was neutralised only by antibodies to PAI-1. At the normal circulating ratio of plasma to platelets, α2-AP was the dominant inhibitor. When the platelet:plasma ratio was raised some 20-fold, platelet PAI-1 provided a significant contribution. High local concentrations of PAI-1 do occur in thrombi in vivo, indicating a role for PAI-1, complementary to that of α2-AP, in such situations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zuo ◽  
Mark Warnock ◽  
Alyssa Harbaugh ◽  
Srilakshmi Yalavarthi ◽  
Kelsey Gockman ◽  
...  

AbstractPatients with coronavirus disease-19 (COVID-19) are at high risk for thrombotic arterial and venous occlusions. However, bleeding complications have also been observed in some patients. Understanding the balance between coagulation and fibrinolysis will help inform optimal approaches to thrombosis prophylaxis and potential utility of fibrinolytic-targeted therapies. 118 hospitalized COVID-19 patients and 30 healthy controls were included in the study. We measured plasma antigen levels of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) and performed spontaneous clot-lysis assays. We found markedly elevated tPA and PAI-1 levels in patients hospitalized with COVID-19. Both factors demonstrated strong correlations with neutrophil counts and markers of neutrophil activation. High levels of tPA and PAI-1 were associated with worse respiratory status. High levels of tPA, in particular, were strongly correlated with mortality and a significant enhancement in spontaneous ex vivo clot-lysis. While both tPA and PAI-1 are elevated among COVID-19 patients, extremely high levels of tPA enhance spontaneous fibrinolysis and are significantly associated with mortality in some patients. These data indicate that fibrinolytic homeostasis in COVID-19 is complex with a subset of patients expressing a balance of factors that may favor fibrinolysis. Further study of tPA as a biomarker is warranted.


Sign in / Sign up

Export Citation Format

Share Document