scholarly journals ОСОБЛИВОСТІ ФУНКЦІОНУВАННЯ ЗОРОВО СИСТЕМИ У КОРИСТУВАЧІВ КОМП’ЮТЕРІВ

Author(s):  
N. B. Behosh ◽  
I. B. Chornomydz ◽  
O. Ya. Zyatkovska

The article adduces the various aspects of the impact of a computer monitor on the functioning of the human visual system. A significant flow of information which daily receives visual apparatus person with computer screens accompanied not only asthenopia but also objective changes of the visual system. There was analysed the visual features and the factors that determined the occurrence of changes in the refractive computer users.

2019 ◽  
Vol 5 (7) ◽  
pp. eaaw4358 ◽  
Author(s):  
Philip A. Kragel ◽  
Marianne C. Reddan ◽  
Kevin S. LaBar ◽  
Tor D. Wager

Theorists have suggested that emotions are canonical responses to situations ancestrally linked to survival. If so, then emotions may be afforded by features of the sensory environment. However, few computational models describe how combinations of stimulus features evoke different emotions. Here, we develop a convolutional neural network that accurately decodes images into 11 distinct emotion categories. We validate the model using more than 25,000 images and movies and show that image content is sufficient to predict the category and valence of human emotion ratings. In two functional magnetic resonance imaging studies, we demonstrate that patterns of human visual cortex activity encode emotion category–related model output and can decode multiple categories of emotional experience. These results suggest that rich, category-specific visual features can be reliably mapped to distinct emotions, and they are coded in distributed representations within the human visual system.


Author(s):  
Vincent Ricordel ◽  
Junle Wang ◽  
Matthieu Perreira Da Silva ◽  
Patrick Le Callet

Visual attention is one of the most important mechanisms deployed in the human visual system (HVS) to reduce the amount of information that our brain needs to process. An increasing amount of efforts has been dedicated to the study of visual attention, and this chapter proposes to clarify the advances achieved in computational modeling of visual attention. First the concepts of visual attention, including the links between visual salience and visual importance, are detailed. The main characteristics of the HVS involved in the process of visual perception are also explained. Next we focus on eye-tracking, because of its role in the evaluation of the performance of the models. A complete state of the art in computational modeling of visual attention is then presented. The research works that extend some visual attention models to 3D by taking into account of the impact of depth perception are finally explained and compared.


2017 ◽  
Vol 114 (18) ◽  
pp. 4793-4798 ◽  
Author(s):  
Michael F. Bonner ◽  
Russell A. Epstein

A central component of spatial navigation is determining where one can and cannot go in the immediate environment. We used fMRI to test the hypothesis that the human visual system solves this problem by automatically identifying the navigational affordances of the local scene. Multivoxel pattern analyses showed that a scene-selective region of dorsal occipitoparietal cortex, known as the occipital place area, represents pathways for movement in scenes in a manner that is tolerant to variability in other visual features. These effects were found in two experiments: One using tightly controlled artificial environments as stimuli, the other using a diverse set of complex, natural scenes. A reconstruction analysis demonstrated that the population codes of the occipital place area could be used to predict the affordances of novel scenes. Taken together, these results reveal a previously unknown mechanism for perceiving the affordance structure of navigable space.


2015 ◽  
Vol 41 (7) ◽  
pp. 925-939 ◽  
Author(s):  
Gizely N. Andrade ◽  
John S. Butler ◽  
Manuel R. Mercier ◽  
Sophie Molholm ◽  
John J. Foxe

2021 ◽  
Author(s):  
◽  
Ryan Sumner

<p>The Accommodation-Vergence Conflict (AVC) is a phenomenon in the area of Head-Mounted Displays (HMDs) and one of the key issues hindering the popularity of HMDs largely due to it causing a large number of users to suffer from simulator sickness. There have been several proposed solutions developed by previous researchers, including the introduction of 'Dynamic Convergence' (DC) which, addresses the AVC problem in terms of the vergence depth cue. DC also helps in the performance of binocular fusion when viewing at a close vergence depth. As of yet however, DC has not undergone detailed testing for a number of important cases, which limits the amount of data that has been collected on DC's interaction with the human visual system. In addition, no DC research as of yet has dealt with the effect of a change in vergence depth, and how that change in the vergence angle of the focal plane would effect a user.  Thus, this thesis adds to the growing body of research and knowledge in this field by implementing DC with the addition of some transitions between a change in vergence depth. This is done within the Unity3D game engine in order to further investigate the impact of DC with regard to viewing close virtual objects on HMDs through a number of cases. The added transitions are also tested to see if they have any beneficial effects for users when the vergence angle changes. The investigation is centered around a perception based performance/appreciation-oriented visual study whereby participants were asked about their ability to perform binocular fusion on close virtual objects that were either stationary or moving and varying distances and speeds. Participants were also asked to report any symptoms of discomfort.  The research has adopted a mixed methodology experimental approach by conducting user experiments and surveys, before analysing the results through both in-depth quantitative statistical analysis and a variety of qualitative statistical techniques in order to measure and investigate the scale of the problem associated with the impact of DC on the human visual system in HMDs when viewing close virtual objects.  From the investigation it was confirmed that the approximate effective vergence depth range for DC was 0.3m or less, with statistical significance confirmed at the 0.15m distance. Participants reported having an easier time performing binocular fusion at these closer distances while DC was enabled. As a result of this, the majority of cases and scenarios did not report any significant negative responses in terms of discomfort symptoms. However attempts at improving DC with a transition between vergence depths were met with a mixed response from participants. While the need of a transition way be dependent on the user, there still exists some demand for one, thus it should still be available as an option.</p>


Sign in / Sign up

Export Citation Format

Share Document