scholarly journals Activation of endothelial cells induces platelet thrombus formation on their matrix. Studies of new in vitro thrombosis model with low molecular weight heparin as anticoagulant.

Author(s):  
J J Zwaginga ◽  
J J Sixma ◽  
P G de Groot
1986 ◽  
Vol 56 (03) ◽  
pp. 318-322 ◽  
Author(s):  
V Diness ◽  
P B Østergaard

SummaryThe neutralization of a low molecular weight heparin (LHN-1) and conventional heparin (CH) by protamine sulfate has been studied in vitro and in vivo. In vitro, the APTT activity of CH was completely neutralized in parallel with the anti-Xa activity. The APTT activity of LHN-1 was almost completely neutralized in a way similar to the APTT activity of CH, whereas the anti-Xa activity of LHN-1 was only partially neutralized.In vivo, CH 3 mg/kg and LHN-1 7.2 mg/kg was given intravenously in rats. The APTT and anti-Xa activities, after neutralization by protamine sulfate in vivo, were similar to the results in vitro. In CH treated rats no haemorrhagic effect in the rat tail bleeding test and no antithrombotic effect in the rat stasis model was found at a protamine sulfate to heparin ratio of about 1, which neutralized APTT and anti-Xa activities. In LHN-1 treated rats the haemorrhagic effect was neutralized when APTT was close to normal whereas higher doses of protamine sulfate were required for neutralization of the antithrombotic effect. This probably reflects the fact that in most experimental models higher doses of heparin are needed to induce bleeding than to prevent thrombus formation. Our results demonstrate that even if complete neutralization of APTT and anti-Xa activities were not seen in LHN-1 treated rats, the in vivo effects of LHN-1 could be neutralized as efficiently as those of conventional heparin. The large fall in blood pressure caused by high doses of protamine sulfate alone was prevented by the prior injection of LHN-1.


1989 ◽  
Vol 61 (02) ◽  
pp. 204-207 ◽  
Author(s):  
D P Thomas ◽  
R E Merton ◽  
E Gray ◽  
T W Barrowcliffe

SummaryThe antithrombotic efficacy of unfractionated heparin (UFH), a low molecular weight heparin (LMWH) and a synthetic pentasaccharide (PENTA) has been compared in an animal model for stasis thrombosis. We have also compared the relative ability of these three agents to impair thrombin generation in vitro and in vivo, and measured their effects on anti-Xa activity and thrombin clotting times. UFH, LMWH and PENTA all had the capacity to impair thrombogenesis, although there were marked differences in their relative effectiveness. Reduction of thrombin generation to 20% of control values was closely correlated with the prevention of thrombosis after 20 minutes’ stasis, but this was only achieved with UFH. The same dry weight dose of LMWH or PENTA reduced thrombin generation to about half control values, and neither significantly impaired thrombus formation after 20 minutes’ stasis. Impaired thrombin generation correlated better than anti-Xa activity with prevention of stasis thrombosis. In this model, UFH was clearly superior to LMWH and PENTA as an antithrombotic agent.


1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


1997 ◽  
Vol 78 (05) ◽  
pp. 1404-1407 ◽  
Author(s):  
B I Eriksson ◽  
S Carlsson ◽  
M Halvarsson ◽  
B Risberg ◽  
C Mattsson

SummaryA sensitive thrombosis model with a high reproducibility was developed in the rat, utilizing stasis of the caval vein and a standardized surgical trauma as the only thrombogenic stimuli. Since no procoagulant substances were used, the results of the present study might be relevant in a clinical situation. The antithrombotic effect of two recently synthesized low-molecular-weight thrombin inhibitors have been compared to dalteparin, (Fragmin) a low-molecular-weight heparin fragment. Each compound was studied at 8 different doses with 10 rats in each group. On a gravimetric basis, the thrombin inhibitor melagatran was twice as potent as dalteparin (ED50 16 and 33 µ/kg per h, respectively). The second thrombin inhibitor, inogatran, had an intermediate effect, with an ED50 of 24 µLg/kg per h. No differences in antithrombotic effect were, however, found when the compounds were compared at anticoagulant equivalent doses (same APTT prolongation). A 50% reduction in the mean thrombus weight was obtained when APTT was prolonged to 1.2 to 1.3 times the pretreatment value.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


Sign in / Sign up

Export Citation Format

Share Document