Involvement of Phosphatidylcholine Hydrolysis by Phospholipase D in Extracellular ATP-Induced Arachidonic Acid Release in Aortic Smooth Muscle Cells

1997 ◽  
Vol 17 (2) ◽  
pp. 295-299 ◽  
Author(s):  
Junji Shinoda ◽  
Atsushi Suzuki ◽  
Yutaka Oiso ◽  
Osamu Kozawa
1997 ◽  
Vol 136 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Junji Shinoda ◽  
Osamu Kozawa ◽  
Atsushi Suzuki ◽  
Yasuko Watanabe-Tomita ◽  
Yutaka Oiso ◽  
...  

Abstract In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholinehydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/l and 0·1 μmol/l. d,l-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1α, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells. European Journal of Endocrinology 136 207–212


1995 ◽  
Vol 73 (3-4) ◽  
pp. 191-199 ◽  
Author(s):  
Masaichi Miwa ◽  
Atsushi Suzuki ◽  
Yasuko Watanabe ◽  
Junji Shinoda ◽  
Yutaka Oiso ◽  
...  

In the present study, we examined the effect of vasopressin (AVP) on phosphatidylcholine-hydrolyzing phospholipase D activity in primary cultured rat aortic smooth muscle cells. AVP stimulation of choline formation was dose dependent. The time-course was quite different from those of inositol phosphates. The effect of AVP on the formation of inositol phosphates (EC50 was 3 nM) was more potent than that on the formation of choline (EC50 was 30 nM). 12-O-Tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C (PKC), stimulated the formation of choline. However, 4α-phorbol 12,13-didecanoate, which is inactive for PKC, had little effect. Staurosporine, an inhibitor of protein kinases, which inhibited the TPA-induced formation of choline, had little effect on the AVP-induced formation of choline. Neither calphostin C, a highly specific PKC inhibitor, nor PKC down-regulation with TPA affected AVP-induced formation of choline. A combination of AVP and TPA additively stimulated the formation of choline. The depletion of extracellular Ca2+ by (ethylenebis(oxyethylenenitrilo))tetraacetic acid significantly reduced the AVP-induced formation of choline. W-7, an antagonist of calmodulin, inhibited the AVP-induced formation of choline in a dose-dependent manner. NaF, an activator for GTP-binding protein (G-protein), stimulated the formation of choline. However, the formation of choline by a combination of AVP and NaF was not additive. Pertussis toxin had little effect on the AVP-induced formation of choline. These results strongly suggest that AVP stimulates phospholipase D in a Ca2+/calmodulin-dependent manner in aortic smooth muscle cells, that a pertussis-toxin-insensitive G-protein is involved in the AVP-induced phospholipase D activation, and furthermore, that PKC is not essential for the activation.Key words: vasopressin, phospholipase D, protein kinase C, calmodulin, GTP-binding protein, aortic smooth muscle cells.


Sign in / Sign up

Export Citation Format

Share Document