scholarly journals Heparin Responsiveness In Vitro as a Prognostic Tool for Vascular Graft Stenosis

Circulation ◽  
1998 ◽  
Vol 97 (25) ◽  
pp. 2486-2490 ◽  
Author(s):  
Jürgen R. Sindermann ◽  
Keith L. March
1985 ◽  
Vol 54 (04) ◽  
pp. 842-848 ◽  
Author(s):  
Kandice Kottke-Marchant ◽  
James M Anderson ◽  
Albert Rabinovitch ◽  
Richard A Huskey ◽  
Roger Herzig

SummaryHeparin is known to affect platelet function in vitro, but little is known about the effect of heparin on the interaction of platelets with polymer surfaces in general, and vascular graft materials in particular. For this reason, the effect of heparin vs. citrate anticoagulation on the interaction of platelets with the vascular graft materials expanded polytetrafluoroethylene (ePTFE), Dacron Bionit (DB) and preclotted Dacron Bionit (DB/PC) was studied in a recirculating, in vitro perfusion system. Platelet activation, as shown by a decrease in platelet count, an increase in platelet release and a decrease in platelet aggregation, was observed for all vascular graft materials tested using heparin and was greater for Dacron and preclotted Dacron than for ePTFE. Significant differences between heparin and citrate anticoagulation were seen for platelet release, platelet aggregation and the relative ranking of material platelet-reactivity. However, the trends and time course of platelet activation were similar with both heparin and citrate for the materials tested.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Edward X. Han ◽  
Hong Qian ◽  
Bo Jiang ◽  
Maria Figetakis ◽  
Natalia Kosyakova ◽  
...  

AbstractA significant barrier to implementation of cell-based therapies is providing adequate vascularization to provide oxygen and nutrients. Here we describe an approach for cell transplantation termed the Therapeutic Vascular Conduit (TVC), which uses an acellular vessel as a scaffold for a hydrogel sheath containing cells designed to secrete a therapeutic protein. The TVC can be directly anastomosed as a vascular graft. Modeling supports the concept that the TVC allows oxygenated blood to flow in close proximity to the transplanted cells to prevent hypoxia. As a proof-of-principle study, we used erythropoietin (EPO) as a model therapeutic protein. If implanted as an arteriovenous vascular graft, such a construct could serve a dual role as an EPO delivery platform and hemodialysis access for patients with end-stage renal disease. When implanted into nude rats, TVCs containing EPO-secreting fibroblasts were able to increase serum EPO and hemoglobin levels for up to 4 weeks. However, constitutive EPO expression resulted in macrophage infiltration and luminal obstruction of the TVC, thus limiting longer-term efficacy. Follow-up in vitro studies support the hypothesis that EPO also functions to recruit macrophages. The TVC is a promising approach to cell-based therapeutic delivery that has the potential to overcome the oxygenation barrier to large-scale cellular implantation and could thus be used for a myriad of clinical disorders. However, a complete understanding of the biological effects of the selected therapeutic is absolutely essential.


2021 ◽  
Vol 12 ◽  
pp. 204173142110277
Author(s):  
Edward X Han ◽  
Juan Wang ◽  
Mehmet Kural ◽  
Bo Jiang ◽  
Katherine L Leiby ◽  
...  

Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO2 of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes.


ASAIO Journal ◽  
1993 ◽  
Vol 39 (3) ◽  
pp. M501-M505 ◽  
Author(s):  
HlROMICHI MlWA ◽  
TAKEHISA MATSUDA ◽  
NOBUTAKA TANI ◽  
KENSUKE KONDO ◽  
FUTOSHI llDA
Keyword(s):  

2018 ◽  
Vol 24 (3) ◽  
pp. 269-277 ◽  
Author(s):  
Hourong Sun ◽  
Chuan-Zhen Liu ◽  
Chunxiao Liu ◽  
Mengmeng Tang ◽  
Guangqing Cao ◽  
...  

Poly (propylene carbonate, PPC) is a new member of the aliphatic polyester family. An outstanding feature of PPC is that it produces mainly water and carbon dioxide when degraded in vivo, causing minimal side effects. This unique property together with excellent biocompatibility and biodegradability makes PPC a promising material for drug delivery. In this study, we explored the effect of the sirolimus (an inhibitor of cell growth)-eluting PPC mesh on graft stenosis and its possible mechanisms in a rat arteriovenous grafting model. The PPC mesh was prepared by electrospinning. A jugular vein to abdominal aortic autograft transplantation model was established in rats. The graft was then treated by wrapping with the drug mesh or the drug-free mesh or left untreated. Four weeks posttransplantation, neointima was measured with hematoxylin and eosin staining, matrix metalloproteinase-2 (MMP-2), and MMP-9, and proliferating cell nuclear antigen (PCNA) in the grafts were assayed by Western blotting and immunohistochemistry, respectively. In vitro rat aortic adventitial fibroblast cell (RAAFC) migration was assessed using the Boyden chamber assay, and phospho-mammalian target of rapamycin (mTOR) levels in RAAFCs were determined by Western blotting. Animals with the drug mesh had an intimal area index of 4.87% ± 0.98%, significantly lower than that of the blank group (14.21% ± 2.56%) or the PPC group (15.03% ± 2.35%, both P < .05). The sirolimus mesh markedly suppressed MMP-2 and MMP-9 expression, decreased PCNA-positive cell numbers, inhibited RAAFC migration, and reduced phospho-mTOR levels. Our data suggest that the sirolimus-eluting PPC mesh might be potentially applied for the management of grafting stenosis.


1998 ◽  
Vol 13 (1) ◽  
pp. 23-45 ◽  
Author(s):  
A. Edwards ◽  
R. J. Carson ◽  
M. Szycher ◽  
S. Bowald
Keyword(s):  

Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 581-585 ◽  
Author(s):  
Vishwanath Bhattacharya ◽  
Peter A. McSweeney ◽  
Qun Shi ◽  
Benedetto Bruno ◽  
Atsushi Ishida ◽  
...  

The authors have shown accelerated endothelialization on polyethylene terephthalate (PET) grafts preclotted with autologous bone marrow. Bone marrow cells have a subset of early progenitor cells that express the CD34 antigen on their surfaces. A recent in vitro study has shown that CD34+ cells can differentiate into endothelial cells. The current study was designed to determine whether CD34+ progenitor cells would enhance vascular graft healing in a canine model. The authors used composite grafts implanted in the dog's descending thoracic aorta (DTA) for 4 weeks. The 8-mm × 12-cm composite grafts had a 4-cm PET graft in the center and 4-cm standard ePTFE grafts at each end. The entire composite was coated with silicone rubber to make it impervious; thus, the PET segment was shielded from perigraft and pannus ingrowth. There were 5 study grafts and 5 control grafts. On the day before surgery, 120 mL bone marrow was aspirated, and CD34+ cells were enriched using an immunomagnetic bead technique, yielding an average of 11.4 ± 5.3 × 106. During surgery, these cells were mixed with venous blood and seeded onto the PET segment of composite study grafts; the control grafts were treated with venous blood only. Hematoxylin and eosin, immunocytochemical, and AgNO3staining demonstrated significant increases of surface endothelialization on the seeded grafts (92% ± 3.4% vs 26.6% ± 7.6%; P = .0001) with markedly increased microvessels in the neointima, graft wall, and external area compared with controls. In dogs, CD34+ cell seeding enhances vascular graft endothelialization; this suggests practical therapeutic applications.


2017 ◽  
Vol 10 (5-6) ◽  
pp. 480-488 ◽  
Author(s):  
Audrey Aussel ◽  
Alexandra Montembault ◽  
Sébastien Malaise ◽  
Marie Pierre Foulc ◽  
William Faure ◽  
...  

Biomaterials ◽  
1986 ◽  
Vol 7 (6) ◽  
pp. 441-448 ◽  
Author(s):  
Kandice Kottke-Marchant ◽  
James M. Anderson ◽  
Albert Rabinovitch

Sign in / Sign up

Export Citation Format

Share Document