Molecular Magnetic Resonance Imaging for the Detection of Vulnerable Plaques

Author(s):  
Brigit den Adel ◽  
Mat J. Daemen ◽  
Robert E. Poelmann ◽  
Louise van der Weerd

Recent advances in molecular resonance imaging of atherosclerosis enable to visualize atherosclerotic plaques in vivo using molecular targeted contrast agents. This offers opportunities to study atherosclerosis development and plaque vulnerability noninvasively. In this review, we discuss MRI contrast agents targeted toward atherosclerotic plaques and illustrate how these new imaging platforms could assist in our understanding of atherogenesis and atheroprogression. In particular, we highlight the challenges and limitations of the different contrast agents and hurdles for clinical application. We describe the most promising existing compounds to detect atherosclerosis and plaque vulnerability. Of particular interest are the fibrin-targeted compounds that detect thrombi and, furthermore, the contrast agents targeted to integrins that allow to visualize plaque neovascularization. Moreover, vascular cell adhesion molecule 1–targeted iron oxides seem promising for early detection of atherosclerosis. These targeted MRI contrast agents, however promising and well characterized in (pre)clinical models, lack specificity for plaque vulnerability.

2020 ◽  
Vol 11 ◽  
pp. 1000-1009
Author(s):  
Miao Qin ◽  
Yueyou Peng ◽  
Mengjie Xu ◽  
Hui Yan ◽  
Yizhu Cheng ◽  
...  

The multimodal magnetic resonance imaging (MRI) technique has been extensively studied over the past few years since it offers complementary information that can increase diagnostic accuracy. Simple methods to synthesize contrast agents are necessary for the development of multimodal MRI. Herein, uniformly distributed Fe3O4/Gd2O3 nanocubes for T 1–T 2 dual-mode MRI contrast agents were successfully designed and synthesized. In order to increase hydrophilicity and biocompatibility, the nanocubes were coated with nontoxic 3,4-dihydroxyhydrocinnamic acid (DHCA). The results show that iron (Fe) and gadolinium (Gd) were homogeneously distributed throughout the Fe3O4/Gd2O3-DHCA (FGDA) nanocubes. Relaxation time analysis was performed on the images obtained from the 3.0 T scanner. The results demonstrated that r 1 and r 2 maximum values were 67.57 ± 6.2 and 24.2 ± 1.46 mM−1·s−1, respectively. In vivo T 1- and T 2-weighted images showed that FGDA nanocubes act as a dual-mode contrast agent enhancing MRI quality. Overall, these experimental results suggest that the FGDA nanocubes are interesting tools that can be used to increase MRI quality, enabling accurate clinical diagnostics.


2014 ◽  
Vol 12 (43) ◽  
pp. 8611-8618 ◽  
Author(s):  
Shimpei Iwaki ◽  
Kazuya Hokamura ◽  
Mikako Ogawa ◽  
Yasuo Takehara ◽  
Yasuaki Muramatsu ◽  
...  

Nanoscale ◽  
2015 ◽  
Vol 7 (28) ◽  
pp. 11899-11903 ◽  
Author(s):  
M. Perrier ◽  
A. Gallud ◽  
A. Ayadi ◽  
S. Kennouche ◽  
C. Porredon ◽  
...  

Ultra small Gd3+/[Fe(CN)6]3− nanoparticles are investigated in vivo as contrast agents for Magnetic Resonance Imaging.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Hyeona Yim ◽  
Seogjin Seo ◽  
Kun Na

Various imaging technologies have become increasingly important in developing a better understanding of information on the biological and clinical phenomena associated with diseases of interest. Of these technologies, magnetic resonance imaging (MRI) is one of the most powerful for clinical diagnosis and in vivo imaging without the exposure to ionising radiation or radiotracers. Despite its many advantages, there are intrinsic limitations caused by MRI contrast agents, such as short vascular half-life circulation, which lead to unwanted side effects. In this review, we will focus on the multifunctional modification of MRI contrast agents for diagnosis and therapy.


2019 ◽  
Author(s):  
Simone Schuerle ◽  
Maiko Furubayashi ◽  
Ava P. Soleimany ◽  
Tinotenda Gwisai ◽  
Wei Huang ◽  
...  

AbstractTumor-selective contrast agents have the potential to aid in the diagnosis and treatment of cancer using noninvasive imaging modalities such as magnetic resonance imaging (MRI). Such contrast agents can consist of magnetic nanoparticles incorporating functionalities that respond to cues specific to tumor environments. Genetically engineering magnetotactic bacteria to display peptides has been investigated as a means to produce contrast agents that combine the robust image contrast effects of magnetosomes with transgenic targeting peptides displayed on their surface. This work reports the first use of magnetic nanoparticles that display genetically-encoded pH low insertion peptide (pHLIP), a long peptide intended to enhance MRI contrast by targeting the extracellular acidity associated with the tumors. To demonstrate the modularity of this versatile platform to incorporate diverse targeting ligands by genetic engineering, we also incorporated the cyclic αv integrin-binding peptide iRGD into separate magnetosomes. Specifically, we investigate their potential for enhanced binding and tumor imaging both in vitro and in vivo. Our experiments indicate that these tailored magnetosomes retain their magnetic properties, making them well-suited as T2 contrast agents, while exhibiting increased binding compared to wild-type magnetosomes.


2016 ◽  
Vol 4 (45) ◽  
pp. 7241-7248 ◽  
Author(s):  
Qin Zhu ◽  
Heng Yang ◽  
Yuanyuan Li ◽  
Yu Tian ◽  
Wei Wang ◽  
...  

HP-DO3A-based amphiphilic magnetic resonance imaging (MRI) contrast agents show electrostatic self-assembly ability with polyelectrolytes, good biocompatibility, and significant contrast enhancement in in vivo imaging.


2021 ◽  
Vol 9 (7) ◽  
pp. 1787-1791
Author(s):  
Run Wang ◽  
Lu An ◽  
Jing He ◽  
Mengmeng Li ◽  
Jingjing Jiao ◽  
...  

Water-soluble Fe(iii) coordination complexes were fabricated as T1-weighted magnetic resonance imaging contrast agents in vivo.


Author(s):  
Anton Popov ◽  
Maxim Artemovich Abakumov ◽  
Irina Savintseva ◽  
Artem Ermakov ◽  
Nelly Popova ◽  
...  

Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern...


2021 ◽  
Vol 11 (3) ◽  
pp. 1165
Author(s):  
Wen-Tien Hsiao ◽  
Yi-Hong Chou ◽  
Jhong-Wei Tu ◽  
Ai-Yih Wang ◽  
Lu-Han Lai

The purpose of this study is to establish the minimal injection doses of magnetic resonance imaging (MRI) contrast agents that can achieve optimized images while improving the safety of injectable MRI drugs. Gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) and ferucarbotran, commonly used in clinical practice, were selected and evaluated with in vitro and in vivo experiments. MRI was acquired using T1-weighted (T1W) and T2-weighted (T2W) sequences, and the results were quantitatively analyzed. For in vitro experiments, results showed that T1W and T2W images were optimal when Gd-DTPA-bisamide (2-oxoethyl) (Gd-DTPA-BMEA) and ferucarbotran were diluted to a volume percentage of 0.6% and 0.05%; all comparisons were significant differences in grayscale statistics using one-way analysis of variance (ANOVA). For in vivo experiments, the contrast agent with optimal concentration percentages determined from in vitro experiments were injected into mice with an injection volume of 100 μL, and the images of brain, heart, liver, and mesentery before and after injection were compared. The statistical results showed that the p values of both T1W and T2W were less than 0.001, which were statistically significant. Under safety considerations for MRI contrast agent injection, optimized MRI images could still be obtained after reducing the injection concentration, which can provide a reference for the safety concentrations of MRI contrast agent injection in the future.


Sign in / Sign up

Export Citation Format

Share Document