scholarly journals Hypoxia Results in Upregulation and De Novo Activation of Von Willebrand Factor Expression in Lung Endothelial Cells

2013 ◽  
Vol 33 (6) ◽  
pp. 1329-1338 ◽  
Author(s):  
Anahita Mojiri ◽  
Maryam Nakhaii-Nejad ◽  
Wei-Lee Phan ◽  
Stephen Kulak ◽  
Aneta Radziwon-Balicka ◽  
...  
2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Alice Huertas ◽  
Steven Greenberg ◽  
Maimaiti Yiming ◽  
Jahar Bhattacharya ◽  
Sunita Bhattacharya

2019 ◽  
Vol 282 ◽  
pp. 1-10 ◽  
Author(s):  
Anahita Mojiri ◽  
Parnian Alavi ◽  
Maria Areli Lorenzana Carrillo ◽  
Maryam Nakhaei-Nejad ◽  
Consolato M. Sergi ◽  
...  

2002 ◽  
Vol 13 (5) ◽  
pp. 1582-1593 ◽  
Author(s):  
Anastasia D. Blagoveshchenskaya ◽  
Matthew J. Hannah ◽  
Simon Allen ◽  
Daniel F. Cutler

von Willebrand factor (vWF) is a large, multimeric protein secreted by endothelial cells and involved in hemostasis. When expressed in AtT-20 cells, vWF leads to the de novo formation of cigar-shaped organelles similar in appearance to the Weibel-Palade bodies of endothelial cells in which vWF is normally stored before regulated secretion. The membranes of this vWF-induced organelle, termed the pseudogranule, are uncharacterized. We have examined the ability of these pseudogranules, which we show are secretagogue responsive, to recruit membrane proteins. Coexpression experiments show that the Weibel-Palade body proteins P-selectin and CD63, as well as the secretory organelle membrane proteins vesicle-associated membrane protein-2 and synaptotagmin I are diverted away from the endogenous adrenocorticotropic hormone-containing secretory granules to the vWF-containing pseudogranules. However, transferrin receptor, lysosomal-associated membrane protein 1, and sialyl transferase are not recruited. The recruitment of P-selectin is dependent on a tyrosine-based motif within its cytoplasmic domain. Our data show that vWF pseudogranules specifically recruit a subset of membrane proteins, and that in a process explicitly driven by the pseudogranule content (i.e., vWF), the active recruitment of at least one component of the pseudogranule membrane (i.e., P-selectin) is dependent on residues of P-selectin that are cytosolic and therefore unable to directly interact with vWF.


1987 ◽  
Vol 104 (3) ◽  
pp. 697-704 ◽  
Author(s):  
P G de Groot ◽  
J H Reinders ◽  
J J Sixma

In this study we have examined the influence of perturbation of endothelial cells on the amounts of fibronectin and von Willebrand factor in their extracellular matrix and the consequences of a changed composition of the matrix on platelet adhesion. For this purpose, we have used an in vitro perfusion system with which we can investigate the interactions of platelets in flowing blood with cultured endothelial cells and their extracellular matrix (Sakariassen, K. S., P. A. M. M. Aarts, P. G. de Groot, W. P. M. Houdgk, and J. J. Sixma, 1983, J. Lab. Clin Med. 102:522-535). Treatment of endothelial cells with 0.1-1.0 U/ml thrombin for 2 h increased the reactivity of the extracellular matrix, isolated after the thrombin treatment, towards platelets by approximately 50%. The increased reactivity did not depend on de novo protein synthesis but was inhibited by 3-deazaadenosine, an inhibitor of phospholipid methylation, which also inhibits the stimulus-induced instantaneous release of von Willebrand factor from endothelial cells. However, no changes in the amounts of von Willebrand factor and fibronectin in the matrix were detected. Thrombin may change the organization of the matrix proteins, not the composition. When endothelial cells were perturbed with the phorbol ester PMA or thrombin for 3 d, the adhesion of platelets to the extracellular matrix of treated cells was strongly impaired. This impairment coincided with a decrease in the amounts of von Willebrand factor and fibronectin present in the matrix. These results indicate that, after perturbation, endothelial cells regulate the composition of their matrix, and that this regulation has consequences for the adhesion of platelets.


Blood ◽  
1989 ◽  
Vol 73 (3) ◽  
pp. 706-711 ◽  
Author(s):  
T Mayadas ◽  
DD Wagner ◽  
PJ Simpson

Abstract The major part of von Willebrand factor (vWf) synthesized in cultured endothelial cells is secreted constitutively without stimulation and consists of all multimeric forms of vWf. In contrast, stimulation with secretagogues such as thrombin results in the release of vWf from the storage pool, the Weibel-Palade bodies which contain only the largest, most biologically potent multimeric forms of vWf. We wished to determine whether the signal for release of vWf might also function as a signal for replenishment of the vWf by enhancing de novo biosynthesis and if replenishment of the vWf storage pool involved a diversion of newly synthesized vWf from the constitutive pathway to the regulated pathway. vWf mRNA and protein levels in unstimulated human umbilical vein endothelial cells were compared with cells that were briefly stimulated with 1 U/mL thrombin for 15 minutes and then incubated without thrombin for periods up to 72 hours. A comparison was also made between unstimulated cells and cells continuously exposed to thrombin for up to 48 hours. Thrombin stimulation, brief or continuous, had no significant effect on subsequent biosynthesis of vWf protein or vWf- specific mRNA. Since thrombin releases vWf only from the storage pool, we examined the possibility of diversion of newly synthesized vWf from the constitutive pathway to the regulated pathway. Cells were pulse- labeled, incubated for 15 minutes with and without thrombin, chased for various periods in unlabeled media, and briefly restimulated with thrombin. No significant redistribution of vWf between the two pathways was observed as a result of thrombin stimulation for the time periods tested.


Sign in / Sign up

Export Citation Format

Share Document