gene target
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 189)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 2 ◽  
Author(s):  
Brian Noh ◽  
Maria P. Blasco-Conesa ◽  
Yun-Ju Lai ◽  
Bhanu Priya Ganesh ◽  
Akihiko Urayama ◽  
...  

Senescence in the cerebral endothelium has been proposed as a mechanism that can drive dysfunction of the cerebral vasculature, which precedes vascular dementia. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) is a matricellular protein secreted by cerebral endothelial cells (CEC). CCN1 induces senescence in fibroblasts. However, whether CCN1 contributes to senescence in CEC and how this is regulated requires further study. Aging has been associated with the formation of four-stranded Guanine-quadruplexes (G4s) in G-rich motifs of DNA and RNA. Stabilization of the G4 structures regulates transcription and translation either by upregulation or downregulation depending on the gene target. Previously, we showed that aged mice treated with a G4-stabilizing compound had enhanced senescence-associated (SA) phenotypes in their brains, and these mice exhibited enhanced cognitive deficits. A sequence in the 3′-UTR of the human CCN1 mRNA has the ability to fold into G4s in vitro. We hypothesize that G4 stabilization regulates CCN1 in cultured primary CEC and induces endothelial senescence. We used cerebral microvessel fractions and cultured primary CEC from young (4-months old, m/o) and aged (18-m/o) mice to determine CCN1 levels. SA phenotypes were determined by high-resolution fluorescence microscopy in cultured primary CEC, and we used Thioflavin T to recognize RNA-G4s for fluorescence spectra. We found that cultured CEC from aged mice exhibited enhanced levels of SA phenotypes, and higher levels of CCN1 and G4 stabilization. In cultured CEC, CCN1 induced SA phenotypes, such as SA β-galactosidase activity, and double-strand DNA damage. Furthermore, CCN1 levels were upregulated by a G4 ligand, and a G-rich motif in the 3′-UTR of the Ccn1 mRNA was folded into a G4. In conclusion, we demonstrate that CCN1 can induce senescence in cultured primary CEC, and we provide evidence that G4 stabilization is a novel mechanism regulating the SASP component CCN1.


2022 ◽  
Author(s):  
Joseph A Lewnard ◽  
Vennis X Hong ◽  
Manish M Patel ◽  
Rebecca Kahn ◽  
Marc Lipsitch ◽  
...  

Background: The Omicron (B.1.1.529) variant of SARS-CoV-2 has rapidly achieved global dissemination, accounting for most infections in the United States by December 2021. Risk of severe outcomes associated with Omicron infections, as compared to earlier SARS-CoV-2 variants, remains unclear. Methods: We analyzed clinical and epidemiologic data from cases testing positive for SARS-CoV-2 infection within the Kaiser Permanente Southern California healthcare system from November 30, 2021 to January 1, 2022, using S gene target failure (SGTF) as assessed by the ThermoFisher TaqPath ComboKit assay as a proxy for Omicron infection. We fit Cox proportional hazards models to compare time to any hospital admission and hospital admissions associated with new-onset respiratory symptoms, intensive care unit (ICU) admission, mechanical ventilation, and mortality among cases with Omicron and Delta (non-SGTF) variant infections. We fit parametric competing risk models to compare lengths of hospital stay among admitted cases with Omicron and Delta variant infections. Results: Our analyses included 52,297 cases with SGTF (Omicron) and 16,982 cases with non-SGTF (Delta [B.1.617.2]) infections, respectively. Hospital admissions occurred among 235 (0.5%) and 222 (1.3%) of cases with Omicron and Delta variant infections, respectively. Among cases first tested in outpatient settings, the adjusted hazard ratios for any subsequent hospital admission and symptomatic hospital admission associated with Omicron variant infection were 0.48 (0.36-0.64) and 0.47 (0.35-0.62), respectively. Rates of ICU admission and mortality after an outpatient positive test were 0.26 (0.10-0.73) and 0.09 (0.01-0.75) fold as high among cases with Omicron variant infection as compared to cases with Delta variant infection. Zero cases with Omicron variant infection received mechanical ventilation, as compared to 11 cases with Delta variant infections throughout the period of follow-up (two-sided p<0.001). Median duration of hospital stay was 3.4 (2.8-4.1) days shorter for hospitalized cases with Omicron variant infections as compared to hospitalized patients with Delta variant infections, reflecting a 69.6% (64.0-74.5%) reduction in hospital length of stay. Conclusions: During a period with mixed Delta and Omicron variant circulation, SARS-CoV-2 infections with presumed Omicron variant infection were associated with substantially reduced risk of severe clinical endpoints and shorter durations of hospital stay.


2022 ◽  
Author(s):  
Sam Abbott ◽  
Katharine Sherratt ◽  
Moritz Gerstung ◽  
Sebastian Funk

Background Early estimates from South Africa indicated that the Omicron COVID-19 variant may be both more transmissible and have greater immune escape than the previously dominant Delta variant. The rapid turnover of the latest epidemic wave in South Africa as well as initial evidence from contact tracing and household infection studies has prompted speculation that the generation time of the Omicron variant may be shorter in comparable settings than the generation time of the Delta variant. Methods We estimated daily growth rates for the Omicron and Delta variants in each UKHSA region from the 23rd of November to the 23rd of December 2021 using surveillance case counts by date of specimen and S-gene target failure status with an autoregressive model that allowed for time-varying differences in the transmission advantage of the Delta variant where the evidence supported this. By assuming a gamma distributed generation distribution we then estimated the generation time distribution and transmission advantage of the Omicron variant that would be required to explain this time varying advantage. We repeated this estimation process using two different prior estimates for the generation time of the Delta variant first based on household transmission and then based on its intrinsic generation time. Results Visualising our growth rate estimates provided initial evidence for a difference in generation time distributions. Assuming a generation time distribution for Delta with a mean of 2.5-4 days (90% credible interval) and a standard deviation of 1.9-3 days we estimated a shorter generation time distribution for Omicron with a mean of 1.5-3.2 days and a standard deviation of 1.3-4.6 days. This implied a transmission advantage for Omicron in this setting of 160%-210% compared to Delta. We found similar relative results using an estimate of the intrinsic generation time for Delta though all estimates increased in magnitude due to the longer assumed generation time. Conclusions We found that a reduction in the generation time of Omicron compared to Delta was able to explain the observed variation over time in the transmission advantage of the Omicron variant. However, this analysis cannot rule out the role of other factors such as differences in the populations the variants were mixing in, differences in immune escape between variants or bias due to using the test to test distribution as a proxy for the generation time distribution.


2022 ◽  
Author(s):  
Emily Toth Martin ◽  
Adam S Lauring ◽  
JoLynn P Montgomery ◽  
Andrew L Valesano ◽  
Marisa C Eisenberg ◽  
...  

The first cluster of SARS-CoV-2 cases with lineage B.1.1.7 in the state of Michigan was identified through intensive university-led surveillance sampling and targeted sequencing. A collaborative investigation and response was conducted by the local and state health departments, and the campus and athletic medicine COVID-19 response teams, using S-gene target failure screening and rapid genomic sequencing to inform containment strategies. A total of 50 cases of B.1.1.7-lineage SARS-CoV-2 were identified in this outbreak, which was due to three coincident introductions of B.1.1.7-lineage SARS-CoV-2, all of which were genetically distinct from lineages which later circulated in the broader community. This investigation demonstrates the successful implementation of a genomically-informed outbreak response which can be extended to university campuses and other settings at high risk for rapid emergence of new variants.


2022 ◽  
Author(s):  
Bede Constantinides ◽  
Hermione Webster ◽  
Jessica Gentry ◽  
Jasmine Bastable ◽  
Laura Dunn ◽  
...  

Genome sequencing is pivotal to SARS-CoV-2 surveillance, elucidating the emergence and global dissemination of acquired genetic mutations. Amplicon sequencing has proven very effective for sequencing SARS-CoV-2, but prevalent mutations disrupting primer binding sites have necessitated the revision of sequencing protocols in order to maintain performance for emerging virus lineages. We compared the performance of Oxford Nanopore Technologies (ONT) Midnight and ARTIC tiling amplicon protocols using 196 Delta lineage SARS-CoV-2 clinical specimens, and 71 mostly Omicron lineage samples with S gene target failure (SGTF), reflecting circulating lineages in the United Kingdom during December 2021. 96-plexed nanopore sequencing was used. For Delta lineage samples, ARTIC v4 recovered the greatest proportion of >=90% complete genomes (81.1%; 159/193), followed by Midnight (71.5%; 138/193) and ARTIC v3 (34.1%; 14/41). Midnight protocol however yielded higher average genome recovery (mean 98.8%) than ARTIC v4 (98.1%) and ARTIC v3 (75.4%), resulting in less ambiguous final consensus assemblies overall. Explaining these observations were ARTIC v4's superior genome recovery in low viral titre/high cycle threshold (Ct) samples and inferior performance in high titre/low Ct samples, where Midnight excelled. We evaluated Omicron sequencing performance using a revised Midnight primer mix alongside the latest ARTIC v4.1 primers, head-to-head with the existing commercially available Midnight and ARTIC v4 protocols. The revised protocols both improved considerably the recovery of Omicron genomes and exhibited similar overall performance to one another. Revised Midnight protocol recovered >=90% complete genomes for 85.9% (61/71) of Omicron samples vs. 88.7% (63/71) for ARTIC v4.1. Approximate cost per sample for Midnight (12GBP) is lower than ARTIC (16GBP) while hands-on time is considerably lower for Midnight (~7 hours) than ARTIC protocols (~9.5 hours).


2021 ◽  
Author(s):  
Dirk Eggink ◽  
Stijn P. Andeweg ◽  
Harry Vennema ◽  
Noortje van Maarseveen ◽  
Klaas Vermaas ◽  
...  

Infections by the Omicron SARS-CoV-2 variant are rapidly increasing worldwide. Among 70,983 infected individuals (age ≥ 12 years), we observed an increased risk of S-gene target failure, predictive of the Omicron variant, in fully vaccinated (odds ratio: 5.0; 95% confidence interval: 4.0-6.1) and previously infected individuals (OR: 4.9: 95% CI: 3.1-7.7) compared with infected naive individuals. This suggests a substantial decrease in protection from vaccine- or infection-induced immunity against SARS-CoV-2 infections caused by the Omicron variant compared with the Delta variant.


2021 ◽  
Author(s):  
Nicole Wolter ◽  
Waasila Jassat ◽  
Sibongile Walaza ◽  
Richard Welch ◽  
Harry Moultrie ◽  
...  

Background The SARS-CoV-2 Omicron variant of concern (VOC) almost completely replaced other variants in South Africa during November 2021, and was associated with a rapid increase in COVID-19 cases. We aimed to assess clinical severity of individuals infected with Omicron, using S Gene Target Failure (SGTF) on the Thermo Fisher Scientific TaqPath COVID-19 PCR test as a proxy. Methods We performed data linkages for (i) SARS-CoV-2 laboratory tests, (ii) COVID-19 case data, (iii) genome data, and (iv) the DATCOV national hospital surveillance system for the whole of South Africa. For cases identified using Thermo Fisher TaqPath COVID-19 PCR, infections were designated as SGTF or non-SGTF. Disease severity was assessed using multivariable logistic regression models comparing SGTF-infected individuals diagnosed between 1 October to 30 November to (i) non-SGTF in the same period, and (ii) Delta infections diagnosed between April and November 2021. Results From 1 October through 6 December 2021, 161,328 COVID-19 cases were reported nationally; 38,282 were tested using TaqPath PCR and 29,721 SGTF infections were identified. The proportion of SGTF infections increased from 3% in early October (week 39) to 98% in early December (week 48). On multivariable analysis, after controlling for factors associated with hospitalisation, individuals with SGTF infection had lower odds of being admitted to hospital compared to non-SGTF infections (adjusted odds ratio (aOR) 0.2, 95% confidence interval (CI) 0.1-0.3). Among hospitalised individuals, after controlling for factors associated with severe disease, the odds of severe disease did not differ between SGTF-infected individuals compared to non-SGTF individuals diagnosed during the same time period (aOR 0.7, 95% CI 0.3-1.4). Compared to earlier Delta infections, after controlling for factors associated with severe disease, SGTF-infected individuals had a lower odds of severe disease (aOR 0.3, 95% CI 0.2-0.6). Conclusion Early analyses suggest a reduced risk of hospitalisation among SGTF-infected individuals when compared to non-SGTF infected individuals in the same time period, and a reduced risk of severe disease when compared to earlier Delta-infected individuals. Some of this reducton is likely a result of high population immunity.


2021 ◽  
Author(s):  
Yanxia Bei ◽  
Kyle B. Vrtis ◽  
Janine G. Borgaro ◽  
Bradley W. Langhorst ◽  
Nicole M. Nichols

The emergence of new SARS-CoV-2 variants necessitates the reevaluation of current COVID-19 tests to ensure continued accuracy and reliability. The new SARS-CoV-2 variant, Omicron, is heavily mutated, with over 50 mutations within its RNA genome. Any of these mutations could adversely affect the ability of diagnostic assays to detect the virus in patient samples, potentially leading to inconclusive or false negative results. In fact, the U.S. Food and Drug Administration (FDA) has identified over two dozen diagnostic tests that contain a gene target that is expected to have significantly reduced sensitivity due to a mutation in the SAS-CoV-2 Omicron variant1. Additionally, one of the U.S. Centers for Disease Control and Prevention (CDC) Emergency Use Authorization (EUA) targets for COVID-19 tests, 2019-nCoV_N1, overlaps an Omicron mutation within the sequence targeted by the fluorescent probe. This target from the CDC has been used in many other EUA assays. Using in vitro transcribed (IVT) N gene RNA representing the wild-type (GenBank/GISAID ID MN908947.3) and Omicron variant (BA.1, GISAID ID EPI_ISL_6752027), we evaluated the performance of two different amplification protocols, both of which include the CDC 2019-nCoV_N1 primer-probe set. Both assays were able to detect the mutant N1 sequence as efficiently as the wild-type sequence. Consequently, these data suggest that diagnostic assays that use the 2019-nCoV-N1 primer-probe set are unlikely to be impacted by currently circulating Omicron lineage viruses.


2021 ◽  
Author(s):  
Rosanna C Barnard ◽  
Nicholas G Davies ◽  
Carl A B Pearson ◽  
Mark Jit ◽  
W John Edmunds

The Omicron B.1.1.529 SARS-CoV-2 variant was first detected in late November 2021 and has since spread to multiple countries worldwide. We model the potential consequences of the Omicron variant on SARS-CoV-2 transmission and health outcomes in England between December 2021 and April 2022, using a deterministic compartmental model fitted to epidemiological data from March 2020 onwards. Because of uncertainty around the characteristics of Omicron, we explore scenarios varying the extent of Omicron's immune escape and the effectiveness of COVID-19 booster vaccinations against Omicron, assuming the level of Omicron's transmissibility relative to Delta to match the growth in observed S gene target failure data in England. We consider strategies for the re-introduction of control measures in response to projected surges in transmission, as well as scenarios varying the uptake and speed of COVID-19 booster vaccinations and the rate of Omicron's introduction into the population. These results suggest that Omicron has the potential to cause substantial surges in cases, hospital admissions and deaths in populations with high levels of immunity, including England. The reintroduction of additional non-pharmaceutical interventions may be required to prevent hospital admissions exceeding the levels seen in England during the previous peak in winter 2020-2021.


Sign in / Sign up

Export Citation Format

Share Document