scholarly journals Associations Between Plasma Ceramides and Cerebral Microbleeds or Lacunes

2020 ◽  
Vol 40 (11) ◽  
pp. 2785-2793
Author(s):  
Eseosa T. Ighodaro ◽  
Jonathan Graff-Radford ◽  
Jeremy A. Syrjanen ◽  
Hai H. Bui ◽  
Ronald C. Petersen ◽  
...  

Objective: High plasma ceramide levels and ratios are associated with poor outcomes in individuals with cardiovascular disease; less is known about their relation to cerebral small vessel disease. We examined whether high plasma ceramide levels or ratios were associated with cerebral microbleeds (CMBs) and lacunes and whether associations differ by sex. Approach and Results: We included 548 participants enrolled in the MCSA (Mayo Clinic Study of Aging) with concurrent plasma ceramide assays and magnetic resonance imaging. CMBs were quantified on T2* magnetic resonance imaging and lacunes on T2 fluid-attenuated inversion recovery magnetic resonance imaging. Fasting plasma ceramides were assayed using liquid chromatography-electrospray ionization tandem mass spectrometry. We used logistic regression models adjusting for age, sex, hypertension, and diabetes mellitus to examine the relationship between ceramides and presence of a lacune; hurdle models were used for presence and number of CMBs. Each SD increase in the log ceramide C16:0/24:0 ratio was associated with greater odds of a CMB (odds ratio, 1.28 [95% CI, 1.01–1.64]). There was an interaction between sex and the ceramide C16:0/24:0 ratio ( P =0.049). The association between this ratio and presence of a CMB was stronger for women (odds ratio, 1.87 [95% CI, 1.20–3.00]) than men (odds ratio, 1.09 [95% CI, 0.80–1.46]). Several ceramides and all ceramide ratios were associated with number of CMBs. We did not find associations between plasma ceramides and lacunes. Conclusions: In a population-based sample, the plasma ceramide C16:0/24:0 ratio was associated with CMBs and was stronger for women. Plasma ceramides are differentially associated with cerebral small vessel pathologies.

2015 ◽  
Vol 6 (03) ◽  
pp. 336-338 ◽  
Author(s):  
Oscar H. Del Brutto ◽  
Robertino M. Mería ◽  
María de la Luz Andrade ◽  
Pablo R. Castillo ◽  
Mauricio Zambrano ◽  
...  

ABSTRACT Background: Diagnosis of cerebral small vessel disease (SVD) is a challenge in remote areas where magnetic resonance imaging (MRI) is not available. Hospital-based studies in high-risk or stroke patients have found an association between the pulsatility index (PI) of intracranial arteries - as derived from transcranial Doppler (TCD) - and white matter hyperintensities (WMH) of presumed vascular origin. We aimed to assess the reliability of cerebral pulsatility indices to identify candidates for MRI screening in population-based studies assessing prevalence of SVD. Methods: A representative sample of stroke-free Atahualpa residents aged ≥65 years investigated with MRI underwent TCD. Using generalized linear models, we evaluated whether the PI of major intracranial arteries correlate with WMH (used as a proxy of diffuse SVD), after adjusting for demographics and cardiovascular risk factors. Results: Out of 70 participants (mean age 70.6 ± 4.6 years, 57% women), 28 (40%) had moderate-to-severe WMH. In multivariate models, there were no differences across categories of WMH in the mean PI of middle cerebral arteries (1.10 ± 0.16 vs. 1.22 ± 0.24, β: 0.065, 95% confidence interval (CI): −0.084-0.177, P = 0.474) or vertebrobasilar arteries (1.11 ± 0.16 vs. 1.29 ± 0.27, β: 0.066, 95% CI: −0.0024-0.156, P = 0.146). Conclusions: Cerebral PI should not be used to identify candidates for MRI screening in population-based studies assessing the burden of SVD.


Nosotchu ◽  
1996 ◽  
Vol 18 (1) ◽  
pp. 10-18
Author(s):  
Tatsuo Kohriyama ◽  
Shinya Yamaguchi ◽  
Eiji Tanaka ◽  
Yasuhiro Yamamura ◽  
Shigenobu Nakamura

Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Jennifer A Deal ◽  
Melinda C Power ◽  
Karen Bandeen-Roche ◽  
Michael Griswold ◽  
David Knopman ◽  
...  

Introduction: Cerebrovascular small vessel disease, seen on brain imaging as lacunes and white matter hyperintensities (WMH), is a substrate for dementia in older adults. Diffusion tensor imaging (DTI) is thought to provide early signs of loss of white matter (WM) integrity due to microvascular disease and predicts WM hyperintensity volume. Retinal fundus photography provides surrogate measures of cerebral microvasculature. No studies have quantified the long-term association between retinal signs and DTI measures. Hypothesis: Microvascular retinal signs measured in midlife are associated with small vessel disease measured on brain magnetic resonance imaging (MRI) 18 years later, including reduced WM microstructural integrity (lower fractional anisotrophy [FA] and greater mean diffusivity [MD] by DTI), greater WM hyperintensity volume and greater lacune prevalence. Methods: In a biracial prospective cohort study, retinal signs were measured using fundus photography (1993-1995) with 3-T magnetic resonance imaging conducted in 2011-13. Multivariable-adjusted linear regression was used to quantify the relationships of retinal signs with WM measures. Prevalence of lacunar infarcts by retinal sign status was estimated using log binomial regression. Analyses were adjusted for age [linear and quadratic terms], education, sex, race, intracranial volume, body mass index, smoking, diabetes, hypertension, and ≥1 APOE ε4 alleles. Results: In 1829 men and women (60% [N=1100] female, 27% [N=489] black race, aged 50-72 years when retinal signs were measured), a binary measure comprised of two retinal signs suggestive of arteriolar damage due to hypertension (focal arteriolar narrowing and/or arteriovenous nicking) was associated with worse (lower) FA (standardized β=-0.19, 95% confidence interval [CI]=-0.35, -0.02), worse (higher) MD (β=0.15, 95% CI=0.00, 0.30), greater WM hyperintensity volume (β=0.15, 95% CI=0.01, 0.30), and greater prevalence of lacunes (prevalence ratio=1.33, 95% CI: 0.99, 1.80). Generalized arteriolar narrowing, measured as the central retinal arteriolar equivalent (CRAE, narrowest quartile vs. widest three quartiles) was associated with worse FA (β=-0.13, 95% CI=-0.24, -0.01) and worse MD (β=0.12, 95% CI=0.01, 0.23). Results did not differ by sex, race, hypertension status or APOE ε4 genotype. No associations were found for retinopathy, but only 56 participants had retinopathy. Conclusions: Consistent with prior work, and as expected based on a common underlying pathology, retinal signs predicted WM disease and lacunar infarcts 18 years later. Novel to this study, we found that retinal signs related to arteriolar damage also predicted loss of white matter microvascular integrity measured using DTI.


2020 ◽  
pp. 239698732092961
Author(s):  
Una Clancy ◽  
Daniela Jaime Garcia ◽  
Michael S Stringer ◽  
Michael J Thrippleton ◽  
Maria C Valdés-Hernández ◽  
...  

Background Cerebral small vessel disease is a major cause of dementia and stroke, visible on brain magnetic resonance imaging. Recent data suggest that small vessel disease lesions may be dynamic, damage extends into normal-appearing brain and microvascular dysfunctions include abnormal blood–brain barrier leakage, vasoreactivity and pulsatility, but much remains unknown regarding underlying pathophysiology, symptoms, clinical features and risk factors of small vessel disease. Patients and Methods: The Mild Stroke Study 3 is a prospective observational cohort study to identify risk factors for and clinical implications of small vessel disease progression and regression among up to 300 adults with non-disabling stroke. We perform detailed serial clinical, cognitive, lifestyle, physiological, retinal and brain magnetic resonance imaging assessments over one year; we assess cerebrovascular reactivity, blood flow, pulsatility and blood–brain barrier leakage on magnetic resonance imaging at baseline; we follow up to four years by post and phone. The study is registered ISRCTN 12113543. Summary Factors which influence direction and rate of change of small vessel disease lesions are poorly understood. We investigate the role of small vessel dysfunction using advanced serial neuroimaging in a deeply phenotyped cohort to increase understanding of the natural history of small vessel disease, identify those at highest risk of early disease progression or regression and uncover novel targets for small vessel disease prevention and therapy.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Lei Zhao ◽  
Allan Lee ◽  
Yu-Hua Fan ◽  
Vincent C.T. Mok ◽  
Lin Shi

Sign in / Sign up

Export Citation Format

Share Document